[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  • 新类目

     管理
     投资理财
     经济
     社会科学
  • 電力電子繫統電磁瞬態過程 趙爭鳴,袁立強,白華 等 著 建築/水利
    該商品所屬分類:醫學 -> 工業技術
    【市場價】
    1579-2288
    【優惠價】
    987-1430
    【作者】 趙爭鳴、袁立強、白華、魯挺 
    【出版社】清華大學出版社 
    【ISBN】9787302537731
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    ISBN編號:9787302537731
    書名:電力電子繫統電磁瞬態過程 電力電子繫統電磁瞬態過程
    作者:趙爭鳴、袁立強、白華、魯挺

    代碼:168
    開本:16開
    是否是套裝:否

    出版社名稱:清華大學出版社

        
        
    "

    電力電子繫統電磁瞬態過程

    作  者: 趙爭鳴,袁立強,白華 等 著
    size="731x8"
    定  價: 168
    size="731x8"
    出?版?社: 清華大學出版社
    size="731x8"
    出版日期: 2019年09月01日
    size="731x8"
    頁  數: 0
    size="731x8"
    裝  幀: 精裝
    size="731x8"
    ISBN: 9787302537731
    size="731x8"
    目錄
    ●1 Introduction 1
    1.1 Decomposition of Power Electronics Systems 2
    1.1.1 Power Semiconductor Devices 2
    1.1.2 Power Conversion Circuit 6
    1.1.3 Pulse Control 6
    1.2 Synthesis of Power Electronics Systems 9
    1.2.1 Integration of Software and Hardware 9
    1.2.2 Interaction Between Information and Energy 10
    1.2.3 Transfer Between Linearity and Non-linearity 12
    1.2.4 Mixture of Continuity and Discreteness 13
    1.2.5 Coordination of Multi-timescale Subsystems 14
    1.3 Applications of Power Electronics Systems 16
    1.3.1 Flexible AC or DC Current Transmission 16
    1.3.2 Power Electronic Systems in Grid-Tied Renewable Energy Generation 19
    1.3.3 Traction System 23
    1.4 Existing Challenges in Power Electronics Systems 25
    1.4.1 Misunderstanding the Short-Timescale Switching Process of Power Switches 25
    1.4.2 Idealization of Power-Conversion Topology for Transient Study. 26
    1.4.3 Unrecognizing the Difference Between Information Pulses and Energy Pulses 28
    1.4.4 Misidentifying Electromagnetic Transients 29
    2 Electromagnetic Transients and Modelling 33
    2.1 Electromagnetic Transients of Power Electronics Systems 33
    2.1.1 Electromagnetic Transients in the Main-Power Loop 34
    2.1.2 Electromagnetic Transients in the Gate-Drive Loop 41
    2.1.3 Electromagnetic Transients in the Control Loop 43
    2.2 Mathematical Models of Electromagnetic Transients 47
    2.2.1 Modelling Electromagnetic Transients 47
    2.2.2 Transient Model of the Main-Power Loop 52
    2.2.3 Transient Models of Electric Components 53
    2.2.4 Transients Model of Gate-Drive and Control Circuits 59
    2.3 Timescale Difference and Impact 61
    2.3.1 Comparison of Different Time-Scale Transients 61
    2.3.2 Correlations Among Different Time-Constant Loops. 67
    2.3.3 Impact of the Time-Constant Difference. 72
    2.3.4 Loop-Parameter Matching for Energy Balancing 75
    2.4 Electromagnetic Pulses and Pulse Sequences 77
    2.4.1 Mathematical Expression of the Electromagnetic Pulses and Pulse Sequences 78
    2.4.2 Propagation and Deformation of the Pulse and Pulse Sequence 80
    2.4.3 Time and Logic Combination of Pulse Sequence 83
    3 Transient Characteristics of Power Switches. 91
    3.1 Physical Mechanism and Characteristics of Power Switches 91
    3.1.1 Physical Mechanism Versus the Switching Characteristics 92
    3.1.2 Different Characteristics of Different Semiconductor- Physics Based Power Devices 101
    3.2 Transient Performance Testing of the Power Switch in the Converter 104
    3.2.1 Topology and Control of the Single-Switch Tester 104
    3.2.2 Stand-Alone Tester for Single-Switch Dynamics 108
    3.2.3 Transient Characteristics of a Single Switch in the Converter 111
    3.3 Transient Performance Analysis of Power Devices in the Converter 117
    3.3.1 Switch Performance During the Operation 117
    3.3.2 Interactions Among Switches 118
    3.4 Power Devices in Parallel Connection 123
    3.4.1 Key Influential Factors on the Switch Parallel 123
    3.4.2 Performance Analysis of Paralleled IGBTs. 126
    3.4.3 Experimental Study of IGBT Parallel 129
    3.5 Power Devices in Series Connection 135
    3.5.1 Fundamentals of the Switches in Series Connection. 135
    3.5.2 IGCTs in Series Connection 138
    4 Transient Commutation Topology and Its Stray Parameters 145
    4.1 Definition of the TCT 145
    4.1.1 Definition of the Converter Topology 145
    4.1.2 Converter Transient Commutation Topology 150
    4.2 Extractions of Stray Parameters in Complex Main Circuits 153
    4.2.1 Comparison of Extraction Approaches 154
    4.2.2 Accuracy Analysis of PEEC 155
    4.2.3 Simplification of Stray-Parameter Extractionsin the Complex Structures 160
    4.3 Analysis of Stray Parameters in IGBT Based Converters 163
    4.3.1 Impact of Stray Parameters on the IGBTs in the Power Converter 163
    4.3.2 Modelling of DC Bus Bars in the IGBT Based Converter 167
    4.4 Analysis of Stray Parameters in IGCT Based Converters 171
    4.4.1 Modelling of DC Bus Bars in a Three-Level IGCT Converter 171
    4.4.2 Transient Commutation Topology 173
    4.5 Quantitative Analysis and Optimization of Stray Parameters 179
    4.5.1 Evaluation of Stray Parameters in the IGBT Module Based Converter 179
    4.5.2 Bus-Bar Optimization for an IGBT Module Based Converter 181
    4.5.3 Evaluation of the Stray Parameters in Clamping Pressed IGCT Based Converters 185
    4.5.4 Bus Bar Optimization for the IGCT Based Three-Level Converter 188
    5 System Safe Operation Area Based on Switching Characteristics 199
    5.1 Definition of SSOA 199
    5.1.1 Basics of SSOA 200
    5.1.2 DSOA Versus SSOA 201
    5.2 Mathematical Models of the SSOA 205
    5.2.1 Key Components, Topology and Control Parameters 205
    5.2.2 Mathematical Model of SSOA 207
    5.2.3 Design Examples Based on SSOA 214
    5.3 Impact Factors of the SSOA 217
    5.3.1 Impact of the DC-Bus Stray Inductance 217
    5.3.2 Impact of Control Parameters 218
    5.3.3 Impact of External Parameters 220
    5.3.4 Impact of the Temperature 221
    5.3.5 Impact of Paralleled Switches on SSOA 223
    5.4 System Evaluation and Optimization Based on the SSOA 223
    5.4.1 Procedure of the Evaluation and Optimization 223
    5.4.2 SSOA Applications in Converter Seriations 227
    5.4.3 Converter Evaluation and Protection Based on the SSOA 235
    6 Measurement and Observation of Electromagnetic Transients 243
    6.1 Structure and Function of Sampling System 244
    6.2 Difference of Power and Signals in Sampling System 247
    6.3 Impact of Sampling Delay and Error on Control Performance 250
    6.3.1 Frequency-Domain Analysis 252
    6.3.2 Time-Domain Analysis 265
    6.4 Reduction of Sampling Delay and Errors 274
    6.4.1 Hardware Development 274
    6.4.2 Software Design 276
    6.4.3 Effectiveness of the Sampling-System Improvement. 278
    7 Electromagnetic Pulses and Sequences in Main Circuit 283
    7.1 Mathematical Descriptions of Pulse and Pulse Sequences in Power Electronics Systems 283
    7.1.1 Pulse Categories and Variations 283
    7.1.2 Mathematical Descriptions of Energy Pulses 284
    7.1.3 Mathematical Description of Information Pulses 287
    7.1.4 Mathematical Expression of the Energy Pulse Sequence 288
    7.1.5 Mathematical Expression of Information Pulse Sequences 288
    7.2 Impact of the Pulse Shape Variation with Related Solutions 289
    7.2.1 Impact of Dead Band and Minimum Pulse Width Design 289
    7.2.2 Influence and Solution of Minimum Pulse Width 302
    7.2.3 Discrete Error with Its Compensation 318
    7.3 Variation of the Pulse Time Sequence and Its Solutions 324
    7.3.1 Impact of the Control Pulse Delay on the Control Performance 324
    7.3.2 Compensation of the Time Delay 330
    8 High-Performance Closed-Loop Control and Its Constraints 335
    8.1 Closed-Loop Control System and Its Constraints 335
    8.1.1 The Structure of the Closed-Loop Control System 335
    8.1.2 The Limitation of the Conventional Control Theory 336
    8.2 Invalid Pulses Caused by Control Strategy and Related Solutions 338
    8.2.1 Invalid Pulses Caused by the Control Coupling 338
    8.2.2 Invalid Pulses Caused by the Saturation of the Controller. 346
    8.2.3 Invalid Pulses Generated at Some Spe Operational States of the Converter 348
    8.3 Active Control of Short-Timescale Pulses. 354
    8.3.1 Classification of the Active Control for Main-Power-Circuit Electromagnetic Pulses 354
    8.3.2 The Active Control of the Main-Power-Circuit Electromagnetic Pulses 356
    8.3.3 Effectiveness of the Active Control Method 361
    8.3.4 Integration of the Active Balancing with the Main-Power Circuit 364
    8.3.5 Validation of the Distributive Active Balancing 367
    9 Balance of Electromagnetic Energy in Transients 373
    9.1 Balancing and Modelling of the Electromagnetic Energy. 374
    9.1.1 Balance of the Electromagnetic Transient Energy 375
    9.1.2 Modelling of the Transient Energy Balancing Control 376
    9.2 Transient Energy Balancing Based Control Strategy 377
    9.2.1 Conventional Voltage Control Strategies 377
    9.2.2 Control Strategy Based on the Transient Energy Balancing 380
    9.3 Energy Balancing Control for a Back-to-Back Converter. 382
    9.3.1 Energy-Balancing Model of Dual PWM Inverters 384
    9.3.2 Analysis of the DC-Bus-Capacitor Energy Oscillation in Dual PWM Inverters 386
    9.3.3 Energy Balancing Strategy Based on the Stepwise Compensation 389
    9.3.4 Minimization of the DC-Bus Voltage Oscillation Based on the Energy Balancing Control 394
    9.4 Analysis of Energy Balancing Control 400
    9.4.1 Small-Signal Model of the Control System 400
    9.4.2 System Stability Analysis 403
    9.4.3 Analysis of the System Dynamic Performance 406
    9.4.4 Analysis of the System Static Error 408
    9.4.5 Simulation and Experimental Analysis 409
    10 Applications of Transient Analysis in Power Converters 417
    10.1 Electromagnetic Transient Analysis in Series Connected HV IGBTs Based Converter 417
    10.1.1 The Transient Mechanism Model of HV IGBTs in Series Connection. 417
    10.1.2 Analysis of the Transient Behavior of Series Connected IGBTs 424
    10.1.3 Analysis of the Transients at the Current Tailing Stage 431
    10.2 SiC Device Based High-Frequency Converters 437
    10.2.1 Analysis and Modelling of Switching Transients 438
    10.2.2 Analysis of Electromagnetic Transients in the High-Frequency Converter 449
    10.3 Summary 459
    References 463
    內容虛線

    內容簡介

    size="789x11"

    本書繫統論述了電力電子繫統瞬態過程理論和應用,內容包括:梳理和認識電力電子繫統的結構和屬性;電力電子繫統中電磁瞬態過程及其建模;功率開關器件瞬態特性、瞬態換流拓撲及其雜散參數和基於器件特性的繫統安全工作區;電磁瞬態過程的量測、主電路電磁脈衝及其序列和高性能閉環控制及其;瞬態電磁能量平衡控制策略基本原理與控制方法;電磁瞬態分析在典型電力電子繫統中的應用。
    本書可供從事電力電子領域工作,特別是從事大容量電力電子繫統研究、裝置開發和工程應用的專業人士參考,也可供高校相關專業教師和研究生參考。

    "




     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部