[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

  •  文化

  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

     保健/养生
     体育/运动
     手工/DIY
     休闲/爱好
     英文原版书
     港台图书
     研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学
  • 金屬氧化物壓敏電阻—從微觀結構到宏觀特性(Metal Oxide Varist
    該商品所屬分類:研究生 -> 工學
    【市場價】
    1744-2528
    【優惠價】
    1090-1580
    【作者】 何金良 
    【所屬類別】 圖書  教材  研究生/本科/專科教材  工學 
    【出版社】清華大學出版社 
    【ISBN】9787302533368
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:平裝-膠訂

    是否套裝:否
    國際標準書號ISBN:9787302533368
    作者:何金良

    出版社:清華大學出版社
    出版時間:2019年08月 

        
        
    "
    編輯推薦

    本書是“十三五”國家重點圖書出版規劃項目,也是本社對外輸出版權(對外合作方為美國Wiley出版公司)的優秀科技圖書。
    本書可供高校和科研院所電氣工程、微電子、材料等專業的師生以及電力傳輸、電氣設備制造等行業的工程技術人員閱讀和參考。  

     
    內容簡介

    金屬氧化物壓敏電阻是電力和電子繫統的關鍵保護器件,直接決定繫統運行的安全可靠性。本書繫統介紹了氧化鋅等壓敏電阻的基礎研究、制備工藝、性能調控及應用進展,包括導電及老化機理、微結構電特性、微結構測試及微結構仿真分析、高梯度低殘壓氧化壓敏陶瓷、氧化鈦及氧化錫等其他體繫壓敏陶瓷的研究進展等,構建了壓敏電阻微結構特性與宏觀特性之間的關聯性。 本書可供高校和科研院所電氣工程、微電子、材料等專業的師生以及電力傳輸、電氣設備制造等行業的工程技術人員閱讀和參考。

    作者簡介

    何金良教授1994年在清華大學獲得博士學位。於1994年4月開始在清華大學電機繫任教,2001年提升為教授。1997年至1998年期間,為韓國電氣研究所電材料部訪問科學家。目前,他是清華大學高壓研究所所長,主要從事電介質材料和電工陶瓷、避雷器技術、電力繫統及電子繫統的電磁暫態和電磁兼容、先進電能傳輸技術等方面的研究。
    何金良教授在國際著名刊物發表論文130餘篇,在中文核心期刊發表論文150餘篇,在重要國際會議發表論文150餘篇,同時合作編寫6本專著及教材。獲國家發明二等獎一次,省部級科技進步獎12項,是2008年亞太電磁環境國際會議暨第19屆蘇伊士電磁兼容國際會議優秀學生論文的合著者。
    2007年因在電能傳輸繫統的雷電防護和接地技術方面的傑出成就而被評為IEEE會士。2010年獲得IEEE電磁兼容學會的“技術成就獎”,2011年獲得IEEE電磁兼容學會的“致謝證書”。
    何金良教授2004年榮獲國家傑出青年基金,2010年被聘為*“長江學者特聘教授”。


    胡軍博士1998年、2000年、2008年在清華大學分獲學士學位、碩士學位和博士學位。2008年開始在清華大學從事博士後研究,2010年8月開始在清華大學

    目錄
    1 Introduction of Varistor Ceramics 1
    1.1 ZnOVaristors 1
    1.2 FabricationofZnOVaristors 3
    1.2.1 PreparationofRawMaterials 4
    1.2.2 SinteringofZnOVaristors 5
    1.3 Microstructure 6
    1.4 TypicalParametersofZnOVaristors 7
    1.5 HistoryofZnOVaristors 9
    1.6 ApplicationsofZnOVaristors 12
    1.7 AlternativeVaristorCeramics 17
    1.8 Ceramic–PolymerCompositeVaristors 18 References 22
    2 Conduction Mechanisms of ZnO Varistors 31
    2.1 Introduction 31
    2.2 BasicConceptsinSolid-StatePhysics 33

    1  Introduction of Varistor Ceramics 1 
    1.1  ZnOVaristors 1 
    1.2  FabricationofZnOVaristors 3 
    1.2.1  PreparationofRawMaterials 4 
    1.2.2  SinteringofZnOVaristors 5 
    1.3  Microstructure 6 
    1.4  TypicalParametersofZnOVaristors 7 
    1.5  HistoryofZnOVaristors 9 
    1.6  ApplicationsofZnOVaristors 12 
    1.7  AlternativeVaristorCeramics 17 
    1.8  Ceramic–PolymerCompositeVaristors 18 References 22 
    2  Conduction Mechanisms of ZnO Varistors 31 
    2.1  Introduction 31 
    2.2  BasicConceptsinSolid-StatePhysics 33 
    2.2.1  AtomicEnergyLevelandEnergyBandofCrystal 33 
    2.2.2  Metal,Semiconductor,andInsulator 35 
    2.2.3  CharacteristicsofFermi–DiracFunction 37 
    2.2.4  ImpurityandDefectEnergyLevel 38 
    2.3  EnergyBandStructureofaZnOVaristor 39 
    2.3.1  EnergyBandStructureofaZnOGrain 39 
    2.3.2  DSBofaZnOVaristor 40 
    2.3.3  MicroscopicOriginofDSB 41 
    2.3.4  Asymmetric I–V CharacteristicsoftheDSB 43 
    2.4  ConductionMechanismofaZnOVaristor 45 
    2.4.1  ConductionModelBasedonThermionicEmissionProcess 46 
    2.4.2  MinorityCarrierGenerationProcess 49 
    2.4.3  TheBypassE?ectModel 51 
    2.5  DielectricCharacteristicsofaZnOVaristor 51 
    2.5.1  ExplanationtoDielectricPropertiesofaZnOVaristor 52 
    2.5.2  E?ectofInterfacialChargeRelaxationonConductingBehaviorofZnOVaristorsUnderTime-VaryingElectricFields 54 
    2.5.3  DeterminationofBarrierHeightandRelatedParameters 58 
    2.5.4  DeterminationofDeepDonorLevelintheZnOVaristor 59 
    2.5.5  DeterminationofGrainandGrainBoundaryConductivity 60 References 62 
    3  Tuning Electrical Characteristics of ZnO Varistors 67 
    3.1  Introduction 67 
    3.2  Liquid-PhaseFabrication 68 
    3.2.1  MicrostructureofZnOVaristor 68 
    3.2.2  PolymorphofBismuthOxide 71 
    3.2.3  In?uenceofBi2O3Concentration 72 
    3.2.4  VolatilizationofBismuthOxide 72 
    3.3  PreparingandSinteringTechniques 74 
    3.3.1  Fabrication 74 
    3.3.2  FabricationStages 75 
    3.3.3  E?ectofPores 76 
    3.4  RoleofOxygenattheGrainBoundary 78 
    3.5  DopantE?ects 79 
    3.5.1  E?ectsofAdditives 79 
    3.5.2  DonorDopants 82 
    3.5.3  AcceptorDopants 86 
    3.5.4  AmphotericDopants 87 
    3.5.4.1  MonovalentDopants 88 
    3.5.4.2  TrivalentDopants 89 
    3.5.5  E?ectsofRareEarthOxides 92 
    3.5.6  DopantsforImprovingtheStability 93 
    3.5.7  EvidenceforHydrogenasaShallowDonor 95 
    3.6  RoleofInversionBoundaries 95 
    3.7  HighVoltageGradientZnOVaristor 98 
    3.8  LowResidualVoltageZnOVaristor 101 
    3.8.1  ResidualVoltageRatio 101 
    3.8.2  LowResidualVoltageZnOVaristorsbyDopingAl 103 
    3.8.3  LowResidualVoltageZnOVaristorsbyDopingGa 106 
    3.8.4  LowResidualVoltageZnOVaristorswithHighVoltageGradient 108 References 110 
    4  Microstructural Electrical Characteristics of ZnO Varistors 125 
    4.1  Introduction 125 
    4.2  MethodstoDetermineGrainBoundaryParameters 126 
    4.2.1  TheIndirectMethod 126 
    4.2.2  TheDirectMicrocontactMethods 126 
    4.3  StatisticalCharacteristicsofGrainBoundaryParameters 129 
    4.3.1  NonuniformityofBarrierVoltages 129 
    4.3.2  DistributionofBarrierVoltage 131 
    4.3.3  DistributionofNonlinearCoe?cient 132 
    Contents 
    4.3.4  DistributionofLeakageCurrentThroughGrainBoundary 133 
    4.3.5  DiscussiononMicrocontactMeasurement 133 
    4.4  Classi?cationofGrainBoundaries 134 
    4.5  OtherTechniquestoDetectMicrostructurallyElectricalPropertiesofZnOVaristors 137 
    4.5.1  ScanningProbeMicroscopy-BasedTechniques 137 
    4.5.2  GalvanicDeterminationofConductiveAreasonaVaristor Surface 139 
    4.5.3  LineScanDeterminationofDi?erencesinBreakdownVoltageWithinaVaristor 141 
    4.5.4  CurrentImagesinSEM 141 
    4.6  TestonFabricatedIndividualGrainBoundary 142 
    4.6.1  ThinFilmApproach 143 
    4.6.2  SurfaceIn-Di?usionApproach 143 
    4.6.3  BicrystalApproach 143 References 145 
    5  Simulation on Varistor Ceramics 149 
    5.1  Introduction 149 
    5.2  GrainBoundaryModel 151 
    5.2.1  I–V CharacteristicModelofGrainBoundary 151 
    5.2.2  GBModelConsideringConductionMechanism 154 
    5.3  SimulationModelof I–V Characteristics 159 
    5.3.1  Simple2DSimulationModel 159 
    5.3.2  2DSimulationModelsBasedontheVoronoiNetwork 161 
    5.3.3  ConsiderationonPoresandSpinels 164 
    5.3.4  AlgorithmtoSolveEquivalentCircuit 165 
    5.3.5  ModelVeri?cation 169 
    5.4  SimulationModelforThermalCharacteristics 170 
    5.4.1  ThermalConductionAnalysis 171 
    5.4.2  Pulse-InducedFractureAnalysis 173 
    5.5  SimulationsonDi?erentPhenomena 174 
    5.5.1  SimulationonMicrostructuralNonuniformity 174 
    5.5.2  SimulationonCurrentLocalizationPhenomenon 175 
    5.5.3  In?uenceofMicrostructuralParametersonBulkCharacteristics 179 
    5.5.3.1  In?uenceofZnOGrainParameters 180 
    5.5.3.2  In?uenceofGrainBoundaryParameters 183 
    5.5.4  In?uentialFactorsonResidualVoltageRatio 186 References 188 
    6  Breakdown Mechanism and Energy Absorption Capability of ZnO Varistor 193 
    6.1  Introduction 193 
    6.2  ImpulseFailureModesofZnOVaristors 194 
    6.3  MechanismsofPunctureandFractureFailures 197 
    6.3.1  MechanismsofPunctureFailure 197 
    6.3.2  MechanismofFractureFailure 201 
    6.4  SimulationofPunctureandFractureFailures 204 
    6.4.1  PunctureDestructionSimulation 204 
    6.4.1.1  PunctureSimulationinMicrostructure 206 
    6.4.2  CrackingFailureSimulationinMicrostructure 208 
    6.5  Thermal Runaway 209 
    6.5.1  PowerLossofZnOVaristor 210 
    6.5.2  ThermalRunawayMechanism 210 
    6.5.3  TeststoEnsuretheThermalStabilityCharacteristics 213 
    6.6  In?uencesofDi?erentFactorsonFailuresofZnOVaristors 213 
    6.6.1  In?uenceofMicrostructuralNonuniformity 213 
    6.6.2  In?uenceofElectricalNonuniformityinMicrostructure 216 
    6.6.3  SimulationAnalysisonBreakdownModes 217 
    6.7  In?uentialFactorsonEnergyAbsorptionCapability 218 
    6.7.1  In?uenceoftheAppliedCurrent 218 
    6.7.2  In?uenceofVaristorCross-sectionalArea 221 
    6.7.3  SimulationAnalysisonSurgeEnergyAbsorptionCapability 221 
    6.8  DiscussionsonEnergyAbsorptionCapability 225 
    6.8.1  EnergyAbsorptionCapabilityDeterminedbyFractureFailure 225 
    6.8.2  EnergyAbsorptionCapabilityDeterminedbyPunctureFailure 226 
    6.8.3  DiscussiononNonuniformityofEnergyAbsorptionCapability 228 
    6.8.4  AdditivesE?ectonEnergyAbsorptionCapability 229 
    6.8.5  OtherMeasurestoImproveEnergyAbsorptionCapability 230 References 230 
    7  Electrical Degradation of ZnO Varistors 235 
    7.1  Introduction 235 
    7.2  DegradationPhenomenaofZnOVaristors 237 
    7.2.1  DegradationPhenomenaoftheVaristorBulk 237 
    7.2.2  DegradationofGrainBoundary 242 
    7.2.3  PulseDegradationCharacteristics 245 
    7.2.4  TopographicInformationforDegradationAnalysis 247 
    7.3  MigrationIonsfortheDegradationofZnOVaristors 249 
    7.3.1  GrainBoundaryDefectModel 249 
    7.3.2  ExperimentalProofofIonMigration 251 
    7.3.3  Identi?cationofDominantMobileIons 252 
    7.3.4  Three-DimensionalExtension 256 
    7.4  DegradationMechanismofZnOVaristors 257 
    7.4.1  DCDegradationMechanism 258 
    7.4.2  ACDegradationMechanism 258 
    7.4.3  NonuniformDegradationMechanism 260 
    7.4.4  PulseDegradationofZnOVaristors 262 
    7.4.4.1  DegradationMechanismUnderImpulseCurrent 263 
    7.4.4.2  SuperimposingDegradation 264 
    7.5  RoleofInteriorMicrocracksonDegradation 266 
    7.6  AntidegradationMeasures 267 
    7.6.1  Speci?cPreparationProcedures 268 
    7.6.2  OptimizationofFormula 269 
    Contents 
    7.6.2.1  DopantE?ectsonImprovingACDegradationCharacteristics 270 
    7.6.2.2  DopantE?ectsonImprovingImpulseDegradationProperty 271 References 272 
    8  Praseodymium/Vanadium/Barium-Based ZnO Varistor Systems 281 
    8.1  PraseodymiumSystem 281 
    8.1.1  DopingE?ects 281 
    8.1.2  E?ectofSinteringProcesses 285 
    8.1.3  High-VoltageApplications 288 
    8.1.4  Low-VoltageApplications 288 
    8.2  VanadiumSystem 289 
    8.2.1  DopingE?ects 290 
    8.2.2  ElectricalCharacteristics 291 
    8.2.3  MicrostructuralCharacteristics 292 
    8.2.4  E?ectsofVanadiumOxideonGrainGrowth 294 
    8.3  BariumSystem 295 
    8.3.1  PreparationandElectricalCharacteristics 295 
    8.3.2  MicrostructuralCharacteristics 296 
    8.3.3  ImprovingStabilityAgainstMoisture 298 
    8.4  ZnO–GlassVaristor 298 References 300 
    9  Fabrications of Low-Voltage ZnO Varistors 307 
    9.1  Introduction 307 
    9.2  ExaggeratingGrainGrowthbySeedGrains 308 
    9.3  SynthesisofNanocrystallineZnOVaristorPowders 309 
    9.3.1  Gas-PhaseProcessingMethods 309 
    9.3.2  CombustionSynthesis 311 
    9.3.3  Sol–GelMethods 311 
    9.3.4  Solution-CoatingMethod 315 
    9.4  Nano?llersinZnOVaristorCeramics 320 
    9.5  SinteringTechniquestoControlGrainGrowth 321 
    9.5.1  Step-sinteringApproach 321 
    9.5.2  MicrowaveSinteringMethod 322 
    9.5.3  SparkPlasmaSinteringTechnique 324 References 327 
    10  Titanium-Based Dual-function Varistor Ceramics 335 
    10.1  SrTiO3 Varistors 335 
    10.1.1  Introduction 335 
    10.1.2  MicrostructureofSrTiO3Varistors 336 
    10.1.3  PreparationofSrTiO3Varistors 336 
    10.1.4  PerformanceofSrTiO3 338 
    10.1.5  ConductionMechanismofSrTiO3 339 
    10.2  TiO2-BasedVaristors 341 
    10.2.1 Introduction 341 
    10.2.2  PreparationofTiO2-BasedVaristors 342 
    10.2.3  MechanismofTiO2Capacitor–VaristorCeramics 342 
    10.2.4  DopingofTiO2-BasedVaristors 343 
    10.2.4.1 Acceptor-DopedTiO2-BasedVaristors 343 
    10.2.4.2 Donor-DopedTiO2-BasedVaristors 344 
    10.2.4.3 CodopingE?ectsofAcceptorandDonorDopants 345 
    10.2.4.4 SinteringAdditivesinTiO2-BasedVaristors 347 
    10.2.5  DevelopmentofTiO2-BasedVaristors 348 
    10.3  CaCu3Ti4O12 Ceramics 348 
    10.3.1  Introduction 348 
    10.3.2  StructureofCCTO 349 
    10.3.2.1 CrystalStructure 349 
    10.3.2.2 PhaseandMicrostructure 350 
    10.3.3  PerformancesofCCTOCeramics 352 
    10.3.3.1 NonohmicCurrent–VoltageCharacteristic 352 
    10.3.3.2 ColossalPermittivity 354 
    10.3.3.3 DielectricLoss 357 
    10.3.4  Mechanism 358 
    10.3.4.1 IBLCModel 358 
    10.3.4.2 ConductingMechanism 362 
    10.3.4.3 PolarizationMechanismofGrains 364 
    10.3.4.4 APolaronicStackingFaultDefectModel 365 
    10.3.5  RoleofDopants 366 
    10.3.5.1 RoleofDopingCuO 366 
    10.3.5.2 DopingMechanismstoTuneCCTOPerformances 368 
    10.4  BaTiO3VaristorsofPTCRE?ect 375 
    10.4.1  Introduction 375 
    10.4.2  DopingE?ects 377 
    10.4.3  PreparationofBaTiO3Ceramics 379 
    10.4.4  PTCRE?ectofBaTiO3Ceramics 381 
    10.4.5  VaristorCharacteristicsofBaTiO3Ceramics 384 References 386 
    11  Tin Oxide Varistor Ceramics of High Thermal Conductivity 407 
    11.1  PreparationofSnO2-BasedVaristors 407 
    11.2  ElectricalPerformancesofSnO2-BasedVaristors 410 
    11.3  MechanismofSnO2-BasedVaristors 414 
    11.3.1  FormationofGrainBoundaryPotentialBarrier 414 
    11.3.2  AtomicDefectModel 415 
    11.3.3  AdmittanceSpectroscopyAnalysis 417 
    11.3.4  Capacitance–VoltageAnalysis 420 
    11.3.5  E?ectofThermalTreatment 421 
    11.4  RoleofDopantsinTuningSnO2-BasedVaristors 423 
    11.4.1  DopantsforDensifyingSnO2-BasedVaristors 423 
    11.4.2  AcceptorDoping 424 
    Contents 
    11.4.3  DonorDoping 427 
    11.5  ThermalPerformances 429 
    11.6  DegradationBehaviors 431 
    11.7  DevelopmentofSnO2-BasedVaristors 432 References 434 
    12  WO3-Based Varistor Ceramics of Low Breakdown Voltage 441 
    12.1  Introduction 441 
    12.2  TungstenOxide 442 
    12.3  PreparationofWO3-BasedVaristors 444 
    12.4  ElectricalPerformances 446 
    12.5  ImprovingtheElectricalStability 448 
    12.6  MechanismModelofWO3-BasedVaristors 449 
    12.7  DopingE?ects 452 
    12.7.1  TheAdditionofRareEarthOxides 452 
    12.7.2  TheAdditionofCuO 453 
    12.7.3  TheAdditionofAl2O3 454 
    12.7.4  TheAdditionofTiO2 455 
    12.7.5  TheAdditionofOtherAdditives 455 References 456 
    Index 461 

    前言
    Metal oxide varistor (MOV), or ZnO varistor, is a kind of polycrystallinesemiconductor ceramics composed of multiple metal oxides and sinteredby conventional ceramic technology. ZnO varistors have good nonlinearvolt-ampere characteristics and excellent impulse energy-absorbing capacities.These advantages make them widely used in transient overvoltage protectionsfor electrical/electronic systems. Now, varistors have been widely used asguardianstoprotectcircuitsoveraverywiderangeofvoltages,fromafewvoltsin semiconductor circuits to 1000kV AC and ± 1100kV DC in electrical power transmission and distribution networks. Correspondingly, they can also handlean enormous range of energies from a few joules to many megajoules. Remarkably,theyarealsoveryfast,switchinginnanosecondsfromtheirhigh-resistancestate to highly conducting state and then restores to a normal high-impedanceoperatingconditions.

    Metal oxide varistor (MOV), or ZnO varistor, is a kind of polycrystallinesemiconductor ceramics composed of multiple metal oxides and sinteredby conventional ceramic technology. ZnO varistors have good nonlinearvolt-ampere characteristics and excellent impulse energy-absorbing capacities.These advantages make them widely used in transient overvoltage protectionsfor electrical/electronic systems. Now, varistors have been widely used asguardianstoprotectcircuitsoveraverywiderangeofvoltages,fromafewvoltsin semiconductor circuits to 1000kV AC and ± 1100kV DC in electrical power transmission and distribution networks. Correspondingly, they can also handlean enormous range of energies from a few joules to many megajoules. Remarkably,theyarealsoveryfast,switchinginnanosecondsfromtheirhigh-resistancestate to highly conducting state and then restores to a normal high-impedanceoperatingconditions.
    Abulkvaristorisacomplexmultijunctiondevicecomposedoflargenumbersofbothohmicandnonlinearelementsconnectedinarandomnetwork.Thefeatures ofbulkvaristorsarein?uencedbythegeometryandthetopologyofthegranularmicrostructure,aswellasthepropertiesandthedistributionofelectricalcharacteristicsofgrainboundaries.ThisbooktriestobridgetheMacro-Characteristics with the properties in microstructures of ZnO varistors to provide insights into someoftheaspectsinthemicrostructuresofZnOvaristors,whichin?uencethefeatures of the bulk varistors and further the science and the understanding onmicrostructuresofZnOvaristorsandthoseparametersthata?ectthee?ciencyduringthemanufacturingprocess.
    The book includes 12 chapters, which mainly focuses on ZnO varistors.Chapter 1 introduces and highlights the fundamental knowledge and applications of ZnO varistors. Chapter 2 introduces the conduction mechanism of theZnO varistor, among the numerous conduction models, the one presented by
    G.E. Pike and further developed by G. Blatter and F. Greuter has been widelyrecognized and may meet most of the experimental phenomena. Various additives to improve the electrical characteristics were discovered and the synthesisconditionswereoptimized,whichwillbeintroducedinChapter3.TheelectricalpropertiesofeachindividualgrainboundarywillcontributetotheglobalelectricalcharacteristicsofZnOvaristors,Chapter4characterizesthemicrostructuralelectrical properties of ZnO varistors. The simulation is helpful to reveal theconnection between the microstructure and the macroscopic characteristics of varistor ceramics, the details on how to simulate varistor ceramics will be presented in Chapter 5. The breakdown of ZnO varistors is an originalphenomenonduringtheirapplications,andthefailuremodelsresultindi?erentenergy handling capabilities, which will be introduced in Chapter 6. ZnO varistors can be electrically, chemically, and thermally degraded during use, leadingto the reduction of barrier voltage height and, consequently, to the increaseof leakage current, which could be catastrophic for ZnO varistors, Chapter 7discusses the electrical degradation of ZnO varistors. Chapter 8 introducesother ZnO varistorsystemsinsteadofbismuth, suchaspraseodymium,barium,andvanadium,forovercomingtheshortcomingsofBi2O3-basedZnOvaristors. 
    The applications in electronic systems require the miniaturized varistors andlow-voltage varistors. Chemical processing, such as sol–gel, solution, precipitation, microemulsion techniques, etc., facilitates a homogeneous doping at themolecular level to obtain a miniature device with a higher breakdown voltage,which will be introduced in Chapter 9. Interestingly, the ceramic–polymercomposite varistor is a composite one, incorporating varistor particles orsemiconducting particles, and its ?eld-dependent property varies with the ?llerconcentration. The composite varistor, with a lower breakdown voltage, can bea suitable substitute for ZnO-based varistors for the purpose of protection forlow-voltagesystems,whichwillbeintroducedinChapter1.
    Besides works on improving the performance of the ZnO varistor material,othernewmaterialshavealsobeensearchedinordertoachieveabetterstabilityand be used for new applications. The titanium-based capacitor–varistor dual-function varistor ceramics, such as TiO2,SrTiO3 CaCu3Ti4O12 (CCTO), and BaTiO3 varistor ceramics, have realized the goal to achieve component miniaturization and provide a superior high-frequency and high-amplitude transientvoltage protection, which will be introduced in Chapter 10. Di?erent fromthe multiphase structure of the ZnO-based varistor, the SnO2-based varistor has a simple microstructure, good stability, and better thermal conductivity,which makes the SnO2-based varistor one of the most promising candidates tocommercially compete with the ZnO-based varistor. The SnO2-based varistors will be introduced in Chapter 11. The WO3-based varistor ceramic is another kind of low-voltage varistor with a low threshold electric ?eld of 5–10Vmm?1 and a high dielectric constant, which enables it to act as a varistor in parallelwithacapacitor,whichwillbeintroducedinChapter12.
    Thisbookcoversmainaspectsofmetaloxidevaristors,whichintroducefundamentalandadvancedtheoriesandtechnologiesrelatedtometaloxide varistors, research achievements in the this ?eld, and has re?ected the recent research works of the authors and their students and colleagues in Tsinghua University,especiallythePh.D. dissertationsofDr. ChenQingheng,Dr. HuJun,Dr. LiuJun, Dr. LongWangcheng,Dr. ZhaoHongfeng,Dr.XieJingcheng,Dr.ChengChenlu, andMScthesisofMs. WeiQiaoyuan.Theauthortriedtocoveralltheaspectsofmetaloxidevaristors,butitishardtoavoidtenthousandmayhavebeenleftout. 
    ProfessorJinliangHe
    TsinghuaUniversityBeijingChina 


    Acknowledgments 
    My research works on metal oxide varistors in Tsinghua University weresupported by the National Natural Science Foundations of China under Grants59907001, 50425721, 50677029, and 50737001, and was supported in part bythe 11th Five-Year Science and Technology Support Plan of China, and by theNational Basic Research Program of China under grant 2014CB239504.
    Enormous references hadbeencited inourbook,all hadbeenlistedineverychapter, but it is hard to avoid careless omission, in this case, I beg your pardon.I am so sorry,some formulas areunable to ?ndthe originalreferences wheretheycame from. 
    I have had a long-term cooperation in the research of metal oxide varistorswith Prof. Nan Cewen of Tsinghua University, who is an Academician of ChineseAcademy of Sciences, and Prof. Lin Yuanhua, who is the Dean of the School ofMaterialsScience andTechnology in TsinghuaUniversity,I havelearnta lotfromthem, and many cooperation results have been collected in the book. I would like to extend my sincere thanks to them.
    Special thanks go to Dr. Han-Goo Cho and Dr. Se-Won Han, from KoreaElectrotechnology Research Institute (KERI), for providing me the chance to doresearch works in the ?eld of metal oxide varistors during 1997–1998. KERI iswhereIstartedmyresearchinthis?eld.
    Special thanks also go to my students, including Dr. Long Wangcheng, Dr. LuoFengchao, Dr. Xie Jingcheng, Ms. Wei Qiaoyuan, and Mr. Meng Pengfei, for theirassistance on preparing the draft of the book and to my colleagues for their generous help in many ways so as to allow me to allocate time working on the book.GreatgratitudeisgiventoProf.HuJunforpreparingthemanuscriptofChapter5,Dr.ChengChenluforpreparingpartmanuscriptsofChapters2and7,andDr.LiuJun for preparing the part manuscript of Chapter 7.
    Gratitude is extended to Mr. Lesley Jebaraj, Project Editor at Wiley, for hiseditorial and technical reviews on this book. His professionalism and experiencehave greatly enhanced the quality and value of this book.
    Lastly, but not least, my most special gratitude goes to my supporting andunderstanding family, my mother, Yang Ruiru, who taught me working hard andenjoying the wonderful life; my wife, Prof. Tu Youping, who had done and hasbeen still doing a great job on supporting the family. Most of all, I am indebted tomy son, Ziyu, I have not spent much time to enjoying his grow-up process, but itis gratifying that he is working hard to become a scientist in the ?eld of statisticsand machine learning. 
    Jinliang He 

    在線試讀
    Introduction of Varistor Ceramics
    Zinc oxide (ZnO) varistor, which is a kind of polycrystalline semiconductorceramic composed of multiple metal oxides and sintered using conventionalceramic technology, is a voltage-dependent switching device, which exhibitshighly nonohmic current–voltage characteristics above the breakdown voltage.Basic information on ZnO varistors, including the fabrication, microstructure,and typical electrical parameters, is introduced. The history and applications ofZnOvaristorsarealsopresented.Thepanoramaofalternativevaristorceramicsfor Bi2O3-based ZnO varistors is mapped out. Especially, the ceramic–polymercomposite varistors with lower breakdown voltage, incorporating varistorparticlessuchassemiconductingparticles,acombinationofmetalandsemiconducting particles, and ZnO microvaristors, in a polymeric matrix are reported.Now, varistors are available that can protect circuits over a very wide range ofvoltages, from a few volts for low voltage varistors in semiconductor circuits to1000kVACand ±1100kVDCinelectricalpowertransmissionanddistribution networks. Correspondingly,theyalsocanhandleanenormousrangeofenergiesfromafewjoulestomanymegajoules.
    1.1 ZnO Varistors
    A varistor is an electronic component with a “diode-like” nonlinear current– voltage characteristic, which is a portmanteau of variable resistor [1]. Function-ally,varistorsareequivalenttoaback-to-backZenerdiodeandaretypicallyusedin parallel with circuits to protect them against excessive transient voltages insuch a way that, when triggered, they will shunt the current created by the highvoltageawayfromsensitivecomponents.
    The most common type of varistor is the metal oxide varistor (MOV), whichcontains a ceramic mass of ZnO grains, in a matrix of other metal oxides, suchas small amounts of bismuth, cobalt, and manganese, sandwiched between twometal electrodes. The boundary between each grain and its neighbor controlsthe current according to the applied voltage, and allows current to ?ow in twodirections. The mass of randomly oriented grains is electrically equivalent to anetworkofback-to-backdiodepairs,eachpairinparallelwithmanyotherpairs.Avaristor’sfunctionistoconductsigni?cantlyincreasedcurrentwhenvoltageisexcessive.Onlynonohmicvariableresistorsareusuallycalledvaristors[1].

    Introduction of Varistor Ceramics 
    Zinc oxide (ZnO) varistor, which is a kind of polycrystalline semiconductorceramic composed of multiple metal oxides and sintered using conventionalceramic technology, is a voltage-dependent switching device, which exhibitshighly nonohmic current–voltage characteristics above the breakdown voltage.Basic information on ZnO varistors, including the fabrication, microstructure,and typical electrical parameters, is introduced. The history and applications ofZnOvaristorsarealsopresented.Thepanoramaofalternativevaristorceramicsfor Bi2O3-based ZnO varistors is mapped out. Especially, the ceramic–polymercomposite varistors with lower breakdown voltage, incorporating varistorparticlessuchassemiconductingparticles,acombinationofmetalandsemiconducting particles, and ZnO microvaristors, in a polymeric matrix are reported.Now, varistors are available that can protect circuits over a very wide range ofvoltages, from a few volts for low voltage varistors in semiconductor circuits to1000kVACand ±1100kVDCinelectricalpowertransmissionanddistribution networks. Correspondingly,theyalsocanhandleanenormousrangeofenergiesfromafewjoulestomanymegajoules. 
    1.1 ZnO Varistors 
    A varistor is an electronic component with a “diode-like” nonlinear current– voltage characteristic, which is a portmanteau of variable resistor [1]. Function-ally,varistorsareequivalenttoaback-to-backZenerdiodeandaretypicallyusedin parallel with circuits to protect them against excessive transient voltages insuch a way that, when tri













     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部