[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

  •  文化

  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

     保健/养生
     体育/运动
     手工/DIY
     休闲/爱好
     英文原版书
     港台图书
     研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学
  • Vibration Utilization Engineering(振動利用工程)
    該商品所屬分類:工業技術 -> 一般工業技術
    【市場價】
    2185-3168
    【優惠價】
    1366-1980
    【作者】 聞邦椿(美)黃顯利李以農張義民 
    【所屬類別】 圖書  工業技術  一般工業技術 
    【出版社】華中科技大學出版社 
    【ISBN】9787568087650
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:精裝

    是否套裝:否
    國際標準書號ISBN:9787568087650
    叢書名:智能制造與機器人理論及技術研究叢書

    作者:聞邦椿,(美)黃顯利,李以農,張義民
    出版社:華中科技大學出版社
    出版時間:2023年02月 


        
        
    "

    編輯推薦

    該書由我國振動領域領銜專家聞邦椿院士撰寫,繫統性介紹了振動利用工程。該書入選“十三五”國家重點圖書出版規劃項目。 

     
    內容簡介

    This book contains seven chapters. Chapter 1 introduces the formation and devel?opment of the Vibration Utilization Engineering; Chap. 2 devotes to some of the important research results in the vibration and waveenergy utilization in some technological processes; Chap. 3 describes the theories on the technological process of the vibration utilization technology and equipments; Chaps. 4 and 5 discuss the vibration utilizations of the linear, pseudo-linear, and non-linear systems; Chap. 6 presents the utilization of the wave and wave-energy; and Chap. 7 briefly illustrates the vibration phenomena and utilizations in the Natures and human societies.

    作者簡介

    聞邦椿,1930年生,教授,博士生導師,中國科學院院士。國際機器理論與機構學聯合會(IFToMM)中國委員會委員,國際轉子動力學技術委員會委員,亞太振動會議指導委員會委員, 中國振動工程學會名譽理事長;國務院學位委員會機械工程學科評議組成員等。主要研究方向:機械繫統非線性動力學、振動利用工程、現代機械產品綜合設計理論與方法。獲國際獎兩項, 國家發明獎和科技進步獎3項, 省、部、委級獎10餘項,國家專利8項。發表論文700餘篇, SCI、EI和ISTP三大檢索論文150餘篇。專著和主編的論文集14部。

    目錄
    1 Formation and Development of Vibration Utilization

    Engineering ................................................... 1

    1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Vibrating Machines and Instruments and Application of Its

    Related Technology and Development . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.3 Applications and Developments of Nonlinear Vibration

    Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1 Formation and Development of Vibration Utilization

    Engineering ................................................... 1

    1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Vibrating Machines and Instruments and Application of Its

    Related Technology and Development . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.3 Applications and Developments of Nonlinear Vibration

    Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.4 Applications and Developments of Wave Motion and Wave

    Energy Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.5 Applications of Electrics, Magnetic and Light Oscillators

    in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1.6 Applications of Electrics, Magnetic and Light Oscillators

    in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    1.7 Vibrating Phenomena, Patterns and Utilization in Natures . . . . . . . 18

    1.8 Vibrating Phenomena, Patterns and Utilization in Human

    Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.9 Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    2 Some Important Results in Vibration and Wave Utilization

    Engineering Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2.1 Utilization of Vibrating Conveyors Technology . . . . . . . . . . . . . . . . 22

    2.2 Applications of Vibrating Screening Technology . . . . . . . . . . . . . . . 24

    2.3 Applications of Vibrating Centrifugal Hydro-Extraction

    and Screening Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.4 Applications of Vibrating Crush and Milling Technology . . . . . . . . 29

    2.5 Applications of Vibrating Rolling and Forming Technology . . . . . 31

    2.6 Applications of Vibrating Tamping Technology . . . . . . . . . . . . . . . . 33

    2.7 Applications of Vibrating Ramming Technology . . . . . . . . . . . . . . . 34

    2.8 Applications of Vibration Diagnostics Technology . . . . . . . . . . . . . 35

    2.9 Applications of Synchronous Vibrating Theory . . . . . . . . . . . . . . . . 37

    2.10 Applications of Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.10.1 The General Utilization of the Resonance . . . . . . . . . . . . . 38

    2.10.2 Application of the Nuclear Magnetic Resonance . . . . . . . . 39

    2.11 Applications of Hysteresis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    2.12 Applications of Impact Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    2.13 Applications of Slow-Changing Parameter Systems . . . . . . . . . . . . 42

    2.14 Applications of Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    2.15 Applications of Piecewise Inertial Force . . . . . . . . . . . . . . . . . . . . . . 44

    2.16 Applications of Piecewise Restoring Force . . . . . . . . . . . . . . . . . . . . 45

    2.17 Utilization of Water Wave and Wind Wave . . . . . . . . . . . . . . . . . . . . 46

    2.18 Applications of Tense or Elastic Waves . . . . . . . . . . . . . . . . . . . . . . . 47

    2.19 Utilization of Supersonic Theory and Technology . . . . . . . . . . . . . . 47

    2.19.1 The Application of the Supersonic Motor . . . . . . . . . . . . . . 48

    2.19.2 Significance and Function in Medical Diagnostics

    of B-Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    2.20 Applications of Optical Fiber and Laser Technology . . . . . . . . . . . . 49

    2.20.1 Application of the Optical Fiber Technology . . . . . . . . . . . 49

    2.20.2 Application of Laser Technology . . . . . . . . . . . . . . . . . . . . . 50

    2.21 Utilizations of Ray Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    2.22 Utilization of Oscillation Theory and Technology . . . . . . . . . . . . . . 51

    2.23 Utilization of Vibrating Phenomena and Patterns

    in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    2.24 Utilization of Vibrating Phenomena and Patterns in Social

    Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    2.25 Utilizations of Vibrating Principles in Biology Engineering

    and Medical Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    3 Theory of Vibration Utilization Technology and Equipment

    Technological Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    3.1 Theory and Technological Parameter Computation

    of Material Movement on Line Vibration Machine . . . . . . . . . . . . . 57

    3.1.1 Theory of Sliding Movement of Materials . . . . . . . . . . . . . 58

    3.1.2 Theory of Material Throwing Movement . . . . . . . . . . . . . . 69

    3.1.3 Selections of Material Movement State

    and Kinematics Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    3.1.4 Calculation of Real Conveying Speed

    and Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    3.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    3.2 Theory and Technological Parameter Computation

    of Circular and Ellipse Vibration Machine . . . . . . . . . . . . . . . . . . . . 89

    3.2.1 Displacement, Velocity and Acceleration

    of Vibrating Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    3.2.2 Theory of Material Sliding Movements . . . . . . . . . . . . . . . 91

    3.2.3 Theory of Material Throwing Movements . . . . . . . . . . . . . 96

    Contents xiii

    3.3 Basic Characteristics of Material Movement

    in Non-harmonic Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . 102

    3.3.1 Initial Conditions for Positive and Negative Sliding

    Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    3.3.2 Stopping Conditions for Positive and Negative

    Sliding Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    3.3.3 Calculations of Averaged Material Velocity . . . . . . . . . . . . 104

    3.4 Theory on Material Movement in Vibrating Centrifugal

    Hydroextractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    3.4.1 Basic Characteristics of Material Movement

    on Upright Vibration Hydroextractor . . . . . . . . . . . . . . . . . 106

    3.4.2 Characteristics of Material Movement

    on Horizontal Vibration Hydroextractor . . . . . . . . . . . . . . . 114

    3.4.3 Computation of Kinematics and Technological

    Parameters of Vibration Centrifugal Hydroextractor . . . . . 115

    3.5 Probability Theory on Material Screening Process . . . . . . . . . . . . . . 119

    3.5.1 Probability of Screening for Material Particle Per

    Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    3.5.2 Falling Incline Angle and Number of Jumps

    of Materials on Screen Length . . . . . . . . . . . . . . . . . . . . . . . 123

    3.5.3 Calculation of Probability of Material Going

    Through Screens for a General Vibration Screen . . . . . . . . 124

    3.5.4 Calculation of Probability of Material Going

    Through Screens for a Multi-screen Vibrating

    Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    3.6 Classification of Screening Method and Probability

    Thick-Layer Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    3.6.1 Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    3.6.2 Screening Methods for Probability Thick Layer

    Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    3.7 Dynamic Theory of Vibrating Machine Technological

    Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    4 Linear and Pseudo Linear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    4.1 Dynamics of Non-resonant Vibrating Machines of Planer

    Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    4.2 Dynamics of Non-resonant Vibrating Machines of Spatial

    Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    4.3 Dynamics of Non-resonant Vibration Machines

    of Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    4.3.1 Dynamics of Non-resonant Vibrating Machines

    of Planer Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 153

    4.3.2 Dynamics of Non-resonant Vibration Machines

    of Spatial Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 157

    xiv Contents

    4.4 Dynamics of Non-resonant Vibration Machines of Multi-axis

    Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    4.4.1 General Pattern of Planer Movement . . . . . . . . . . . . . . . . . . 159

    4.4.2 Values of Displacement, Velocity and Acceleration

    Curves and Differential Coefficients When θ2 is

    Equal to /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    4.5 Dynamics of Inertial Near-Resonant Type of Vibration

    Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    4.5.1 Dynamics of Single Body Near-Resonant Vibration

    Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    4.5.2 Dynamics of Double Body Near-Resonant

    Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    4.6 Dynamics of Single Body Elastic Connecting Rod Type

    of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 168

    4.7 Dynamics of Double Body Elastic Connecting Rod Type

    of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 171

    4.7.1 Balanced Type of Vibration Machines with Double

    Body Elastically Connecting Rod . . . . . . . . . . . . . . . . . . . . 171

    4.7.2 Non-balance Double Body Type of Elastically

    Connecting Rod Vibration Machines . . . . . . . . . . . . . . . . . . 173

    4.8 Multi-body Elastic-Connecting Rod Type of Near-Resonant

    Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    4.9 Dynamics of Electric–Magnetic Resonant Type of Vibrating

    Machines with Harmonic Electric–Magnetic Force . . . . . . . . . . . . . 180

    4.9.1 Basic Categories of Electric–Magnetic Forces

    of Electric–Magnetic Vibration Machines . . . . . . . . . . . . . 180

    4.9.2 Dynamics of Electric–Magnetic Type of Vibrating

    Machines with Harmonic Electric–Magnetic Force . . . . . 180

    4.9.3 Amplitudes and Phase Angle Differentials

    of One-Half-Period Rectification EMTVM . . . . . . . . . . . . 184

    4.9.4 Amplitudes and Phase Angle Differentials

    of One-Half-Period Plus One-Period Rectification

    EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    4.10 Dynamics of Electric–Magnetic Type of Near-Resonant

    Vibration Machines with Non-Harmonic Electric–Magnetic

    Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    4.10.1 Relationships Between Electric–Magnetic Force

    and Amplitudes of Controlled One-Half-Period

    Rectification EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    4.10.2 Relationships Between Electric–Magnetic Force

    and Amplitudes of the Decreased Frequency

    EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Contents xv

    5 Utilization of Nonlinear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    5.2 Utilization of Smooth Nonlinear Vibration Systems . . . . . . . . . . . . 201

    5.2.1 Measurement of Dry Friction Coefficients Between

    Axis and Its Bushing Using Double Pendulum . . . . . . . . . 201

    5.2.2 Measurement of Dynamic Friction Coefficients

    of Rolling Bearing Using Flode Pendulum . . . . . . . . . . . . . 203

    5.2.3 Increase the Stability of Vibrating Machines Using

    Hard-Smooth Nonlinear Vibrating Systems . . . . . . . . . . . . 207

    5.3 Engineering Utilization of Piece-Wise-Linear Nonlinear

    Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    5.3.1 Hard-Symmetric Piece-Wise Linear Vibration

    Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    5.3.2 Soft-Asymmetric Piece-Wise Linear Vibration

    Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    5.3.3 Nonlinear Vibration Systems with Complex

    Piece-Wise Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    5.4 Utilization of Vibration Systems with Hysteresis Nonlinear

    Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

    5.4.1 Simplest Hysteresis Systems . . . . . . . . . . . . . . . . . . . . . . . . 223

    5.4.2 Hysteresis Systems with Gaps . . . . . . . . . . . . . . . . . . . . . . . 226

    5.5 Utilization of Self-excited Vibration Systems . . . . . . . . . . . . . . . . . . 231

    5.6 Utilization of Nonlinear Vibration Systems with Impact . . . . . . . . . 233

    5.7 Utilization of Frequency-Entrainment Principles . . . . . . . . . . . . . . . 236

    5.7.1 Synchronous Theory of Self-synchronous Vibrating

    Machine with Eccentric Exciter . . . . . . . . . . . . . . . . . . . . . . 238

    5.7.2 Double Frequency Synchronization of Nonlinear

    Self-synchronous Vibration Machines . . . . . . . . . . . . . . . . . 250

    5.8 Utilization of Nonlinear Vibration Systems with Nonlinear

    Inertial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

    5.8.1 Movement Equations for Vibration Centrifugal

    Hydro-Extractor with Nonlinear Inertial Force . . . . . . . . . 259

    5.8.2 Nonlinear Vibration Responses of Vibration

    Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 261

    5.8.3 Frequency-Magnitude Characteristics of Vibration

    Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 263

    5.8.4 Experiment Vibration Responses of Vibration

    Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 264

    5.9 Utilization of Slowly-Changing Parameter Nonlinear

    Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

    5.9.1 Slowly-Changing Systems Formed in Processes

    of Starting and Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    5.9.2 Slowly-Changing Rotor Systems Formed in Active

    Control Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

    xvi Contents

    5.10 Utilization of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

    5.10.1 Major Methods for Studying Chaos . . . . . . . . . . . . . . . . . . . 271

    5.10.2 Software of Studying Chaos Problems . . . . . . . . . . . . . . . . 273

    5.10.3 Application Examples of Chaos . . . . . . . . . . . . . . . . . . . . . . 275

    6 Utilization of Wave and Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    6.1 Utilization of Tidal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    6.2 Utilization of Sea Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

    6.3 Utilization of Stress Wave in Vibrating Oil Exploration . . . . . . . . . 288

    6.3.1 Mechanism and Working Principles of Controllable

    Super-Low Frequency Vibration Exciters . . . . . . . . . . . . . . 289

    6.3.2 Effect of Stress Wave on Oil Layers . . . . . . . . . . . . . . . . . . 290

    6.3.3 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . . . 299

    6.3.4 Elastic Stress Wave Propagation When

    a Controllable Vibration Source is Working . . . . . . . . . . . . 305

    7 Utilization of Vibrating Phenomena and Patterns in Nature

    and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    7.1 Utilization of Vibration Phenomena and Patterns

    in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    7.2 Periodical Vibration and Utilization of the Tide . . . . . . . . . . . . . . . . 316

    7.3 Vibration Patterns and Utilization in Other Natural

    Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

    7.3.1 Periodical Phenomenon of Tree Year-Rings . . . . . . . . . . . . 318

    7.3.2 Bee’s Communications Using Vibrations . . . . . . . . . . . . . . 319

    7.4 Utilization of Vibration Phenomena and Patterns in Some

    Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    7.4.1 Fluctuation and Nonlinear Characteristics in Social

    Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    7.4.2 Growth and Decline Period in Social Economy

    Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    7.4.3 Active Role of Macro-adjustment in Preventing

    Big Economy Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 325

    7.5 Utilization of Vibration Phenomena and Patterns in Stock

    Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

    7.5.1 Stock Fluctuation is One of Typical Types

    of Economy Change Form in Social Economy Fields . . . . 326

    7.5.2 Stock Market Characteristics and General Patterns

    of Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

    7.5.3 Some Principles in Stock Operations . . . . . . . . . . . . . . . . . . 332

    7.6 Obey the General Rules in the Stock Operations . . . . . . . . . . . . . . . 332

    7.7 The Entering Point and Withdrawing Points in the Stock

    Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

    Contents xvii

    7.8 Utilization of Vibration Phenomena and Pattern in Human

    Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

    7.8.1 Vibration is a Basic Existing Form of Many Human

    Organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

    7.8.2 Some Diseases Make Abnormal Fluctuations

    (Vibration) in Human Organs Physical Parameters . . . . . . 336

    7.8.3 Medical Devices and Equipment Based

    on Vibration Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

    7.8.4 Artificial Organs and Devices Using Vibration

    Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

    7.9 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

    前言
    Vibration, or oscillation, is a periodic movement in time of a system around a certain equilibrium position. The system consists of at least an element for storing kinetic energy and one for storing potential energy. The vibration is a process of energy-type exchanges between the kinetic and potential energies. The equilibrium position is the state in which the potential energy becomes zero. The periodicity of the movement is described in frequency which is the measurement of the numbers of times the repeated events that occurred in a unit time. Vibration is an omnipresent type of

    dynamic behavior of a system and exists in many forms, such as sound and music.

    Vibration, or oscillation, is a periodic movement in time of a system around a certain equilibrium position. The system consists of at least an element for storing kinetic energy and one for storing potential energy. The vibration is a process of energy-type exchanges between the kinetic and potential energies. The equilibrium position is the state in which the potential energy becomes zero. The periodicity of the movement is described in frequency which is the measurement of the numbers of times the repeated events that occurred in a unit time. Vibration is an omnipresent type of

    dynamic behavior of a system and exists in many forms, such as sound and music.

    Human beings first recognized the vibration phenomenon by entertaining them?selves with percussion, string, and plate music instruments in ancient times. Just like the time when the lever principle was discovered is much later than that of its real utilization in human history, the time when the vibration and acoustics theory on the principles of the music instruments were discovered is much later than that of the music instruments were made and played. The earliest music instrument unearthed in Henan Province, China, is a bone flute, which can be traced back about 6000–5000 years B.C., while the earliest string vibration frequency and music acoustic theory for a string instrument ever written and published in Chinese history is around 700

    B.C. in “Guanzi” by Guan Zhong (723–645 B.C.). In his music-scale algorithm, if the length of the basic string for the major tone is 1, the string lengths of the next scales are either added 1/3 (4/3) of the basic length or subtracted 1/3 (or 2/3), other music scales are determined by this 1/3 length rule, and he obtained five tones by this algorithm:

    C, D, E, G, A. It’s amazing that more than 100 years later the Greek Philosopher and Mathematician Pythagoras (570–504 B.C.) discovered independently the very similar theory for seven tones: The Pythagorean scale.

    Human beings first learned the vibration and acoustics of the plates and shells also from music instrument manufacturers. “Kaogongji” or “Artificer’s Record” 500 B.C. in Chinese history, recorded the Bian-Qing (sound bian-ching). It is a set of percussion, made of high-quality stones such as jade, with several fixed music scales.

    The “Kaogongji” specifically described how to adjust the percussion music scale: “if music scale is higher, filing the surfaces of the plate, if the scale is lower, then filing the edges of the plate”. These technological processes, even though not giving exactly the quantitative relation between the natural frequencies of the plate and its geometrical parameters, are indeed in accordance qualitatively with the contemporary vibration and acoustic principles of the plate and shells: filing the surfaces of the plate makes the plate thinner and natural frequencies will be decreased while filing the edges of the plate makes the plate relatively thicker thus the natural frequencies will be increased.

    One of the most important dynamic properties for the vibrations of a system is the inherit frequency or natural frequency. The vibrating movements of a system occur by external forces or internal self-excitement. When the frequencies of the excitation are the same or near the system’s natural frequencies, the responses of the systems will become larger and larger, which is called the resonance. The resonance has a variety of applications, such as radio, television, and music. The large-magnitude vibrations, such as large magnitude earthquakes, tsunamis, could bring harmful,devastative, and even catastrophic damages to properties and human lives. People tried to predict the earthquake by vibrating devices. In 132 A.D. Zhang Heng (78–

    139 A.D.), a Chinese mathematician, an astronomer, and a geographer, invented the vibration utilization device: Seismographer. The shape of the device looks like a goblet. Eight (8) exquisitely casting dragons, upside down, attached to the body ofthe device. The eight dragons are mounted in the North, South, East, West, North?east, Southeast, Northwest, and Southwest directions, respectively, representing the earthquake directions. There is a ball in each dragon’s month. There is a vivid toad,mounted separately to the body, under each dragon. It is said that when an earth?quake occurs the dragon in the earthquake direction will release its ball in its mouth into the toad mouth as a prediction indication. The exact mechanism inside was not

    well documented. It was recorded in history books that this device had successfully predicted an earthquake about 600 miles away in 138 A.D. just 1 year before he died.

    In modern days, tens of thousands of types of vibrating machines and instruments have been successfully used to accomplish a variety of technological procedures in the fields

     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部