[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

  •  文化

  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

     保健/养生
     体育/运动
     手工/DIY
     休闲/爱好
     英文原版书
     港台图书
     研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学
  • 氣體熱動力潤滑與密封(Gas Thermohydrodynamic Lubrication and
    該商品所屬分類:工業技術 -> 一般工業技術
    【市場價】
    971-1408
    【優惠價】
    607-880
    【作者】 白少先、溫詩鑄 
    【所屬類別】 圖書  工業技術  一般工業技術 
    【出版社】清華大學出版社 
    【ISBN】9787302598336
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:平裝-膠訂

    是否套裝:否
    國際標準書號ISBN:9787302598336
    作者:白少先、溫詩鑄

    出版社:清華大學出版社
    出版時間:2021年12月 

        
        
    "

    編輯推薦

    隨著現代機械裝備不斷向高壓、高速和高(低)溫現等高參數化發展,高速氣體軸承和高壓氣體密封設計中所面臨的流固熱等多場耦合、介質相變、高速流效應等氣體潤滑理論和設計方法問題日益突出。本書針對精密機電裝備、石油、化工流程工業裝備以及航空裝備中典型氣體軸承和密封結構形式,繫統的闡述了氣體潤滑理論和分析方法,可作為高校機械工程等相關專業研究生教材,也可為相關領域的氣體軸承和密封設計提供參考。

     
    內容簡介

    本書全面繫統的闡述了氣體潤滑與密封的理論和設計分析方法。內容包括:氣體狀態方程與基本性質、氣體潤滑方程、等溫氣體潤滑理論、剛性表面氣體熱潤滑理論、氣體密封熱彈流潤滑理論、端面密封氣體熱彈流動態特性、高壓氣體冷凝析水潤滑、密封實驗與設計方法。

    作者簡介

    白少先,男,1976年生,博士,浙江工業大學研究員、博士生導師。1998年7月畢業於山東輕工業學院機械設計與制造專業,獲學士學位;2001年7月畢業於太原理工大學機械設計及理論專業,獲碩士學位;2004年7月畢業於華南理工大學機械設計及理論專業,獲博士學位;2006年11月從清華大學機械工程博士後流動站出站,進入浙江工業大學工作;2011年9月至2012年2月,在美國賓夕法尼亞大學從事訪問學者研究。現為中國機械工程學會高級會員,中國機械工程學會摩擦學分會青年工作委員會委員,氣體潤滑專業委員會副主任委員,入選浙江省151人纔計劃第三層次、浙江省高校中青年學科帶頭人,獲浙江省自然科學傑出青年基金資助。主要從事高溫界面流體潤滑與發動機密封研究,重點在高溫流體潤滑理論、密封表面減磨耐磨新結構設計、密封表面精密加工技術、密封實驗測試技術、密封壽命預測與可靠性評定等方面開展工作。主持國家自然科學基金、浙江省自然科學基金、浙江省科技計劃項目、清華大學摩擦學國家重點實驗室開放基金項目、企業密封技術研發項目等10餘項。發表SCI論文20餘篇,獲授權國家發明專利8項。

    目錄
    CHAPTER 1 Properties of gases.1
    1.3.1 Pressure .. 12
    1.3.2 Humidity. 13
    1.3.3 Dew point temperature 14
    References 14
    2.1.4 Lubrication parameters .. 20
    References 35
    3.2
    3.3
    CHAPTER 4
    4.1
    4.2
    4.3
    4.4

    CHAPTER 1 Properties of gases.1 


    1.1  Gas equations 1 


    1.1.1  Ideal gas equations.. 2 


    1.1.2  Gas index equation.. 3 


    1.1.3  Actual gas equation. 5 


    1.1.4  Degree of gas molecular freedom .. 5 


    1.1.5  Specific heat capacity  7 


    1.2  Viscosity ..7 


    1.3  Property of wet gas .11 
    1.3.1 Pressure .. 12 
    1.3.2 Humidity. 13 
    1.3.3 Dew point temperature 14 
    References 14 


    CHAPTER 2 Gas lubrication equations. 15 


    2.1  Reynolds equation 15 


    2.1.1  Derivation of Reynolds equation.. 16 


    2.1.2  Reynolds equation in the polar coordinate system . 19 


    2.1.3  Reynolds equation in the cylindrical coordinate system.. 19 
    2.1.4  Lubrication parameters .. 20 


    2.2  Energy equation.22 


    2.2.1  Chang of gas inner energy 23 


    2.2.2  External work on gas and energy loss 24 


    2.3  Solid heat conduction equation and the interface equation ..26 


    2.4  Numerical analysis method.27 


    2.4.1  Finite difference method 27 


    2.4.2  Flow conservation. 28 


    2.4.3 Friction force balance . 34 
    References 35 


    CHAPTER 3 Isothermal gas lubrication .. 37 


    3.1  Sliders .37 


    3.1.1  Lubrication equation  38 


    3.1.2  Pressure boundary condition 40 


    3.1.3  Lubrication performance parameters.. 40 


    VI Contents 
    3.2 
    3.3 
    CHAPTER 4 
    4.1 
    4.2 
    4.3 
    4.4 
    3.1.4  Hydrodynamic lubrication characteristics of sliders.. 41 


    3.1.5  Hydrodynamic lubrication characteristics of divergent sliders .. 43 
    3.1.6  Lubrication characteristics of the magnetic head slider . 45 Journal bearing and radial seal .51 
    3.2.1 Lubrication equations.. 52 
    3.2.2 Boundary conditions  52 
    3.2.3 Lubrication parameters .. 53 
    3.2.4 Lubrication characteristics 55 
    Spiral groove thrust bearing56 
    3.3.1 Gas lubrication equations.. 59 
    3.3.2 Pressure boundary conditions . 60 
    3.3.3 Lubrication parameters .. 60 
    3.3.4 Lubrication characteristics 61 
    3.3.5 Spiral groove face seal 64 
    3.3.6 Lubrication equations.. 65 


    3.3.7  Pressure boundary conditions . 65 


    3.3.8  Seal performance parameters.. 66 


    3.3.9 Lubrication regularity . 66 
    References 71 


    Gas thermohydrodynamic lubrication of rigid surfaces.. 73 Sliders .73 
    4.1.1  Gas lubrication equations.. 73 


    4.1.2  Boundary conditions  75 


    4.1.3 Thermal lubrication characteristics . 75 
    Journal bearing and radial seal .79 


    4.2.1  Lubrication equations.. 79 


    4.2.2  Thermal boundary condition 80 


    4.2.3 Lubrication property  80 
    Spiral groove thrust bearing83 


    4.3.1  Lubrication equations.. 83 


    4.3.2  Boundary conditions  85 


    4.3.3 Lubrication property  86 
    Spiral groove face seal..86 


    4.4.1  Temperature characteristics of gas film  91 


    4.4.2 Lubrication property  94 
    References 99 


    Contents VII 
    CHAPTER 5  Gas thermoelastohydrodynamic lubrication of face seals . 101 
    5.1  Fundamental equations101 


    5.1.1  Lubrication equations 101 


    5.1.2  Boundary conditions . 104 


    5.2  Choked fluid effect107 


    5.2.1  Model validation . 107 


    5.2.2  Pressure distribution characteristics . 109 


    5.3  Characteristics of thermoelastic distortions of seal faces..109 
    5.4  Characteristics of gas thermoelastohydrodynamic lubrication..111 
    5.4.1  Mechanical distortions . 111 


    5.4.2  Thermal distortions  115 


    5.4.3 Thermoelastic distortions 117 
    References. 120 


    CHAPTER 6  Transient thermoelastohydrodynamic gas lubrication of face seals  121 
    6.1  Fundamental equations121 


    6.1.1  Dynamic equations. 122 


    6.1.2  Lubrication equations 122 


    6.1.3  Boundary conditions . 123 


    6.1.4  Dynamic characteristic parameter . 123 


    6.2  Dynamic characteristics of isothermal gas lubrication .124 


    6.2.1  Axial stiffness and damping . 124 


    6.2.2  Angular stiffness and damping  126 


    6.2.3  Amplitude-frequency characteristics of gas film .. 129 


    6.3  Dynamic characteristics of thermal gas lubrication of rigid surfaces 130 
    6.3.1  Axial stiffness and damping . 131 


    6.3.2  Angular stiffness and damping  134 


    6.3.3  Amplitude-frequency characteristics of gas film .. 137 


    6.4  Dynamic characteristics of gas thermoelastohydrodynamic lubrication..137 
    6.4.1  Axial stiffness and damping . 137 


    6.4.2  Angular stiffness and damping of gas film .. 139 


    6.4.3  Amplitude-frequency characteristics of gas film. 140 References. 141 
    VIII Contents 
    CHAPTER 7  Vapor-condensed gas lubrication of face seals .. 143 
    7.1  Fundamental equations143 


    7.1.1  Wet gas equations .. 143 


    7.1.2  Vapor-condensed parameter . 145 


    7.2  Characteristics of vapor condensation in gas lubrication film 145 
    7.3  Laws of vapor condensation in gas lubrication film..146 


    7.3.1  Humidity.. 146 


    7.3.2  Seal clearance 147 


    7.3.3  Seal pressure . 148 


    7.3.4  Rotational speed.. 148 


    7.4  Movement of liquid drops on gas lubrication surfaces.150 


    7.4.1  Surface wetting model . 150 


    7.4.2  Surface-texture geometry parameters and wettability 152 
    7.4.3 Droplet motion . 158 
    7.4.4 Drop adsorption on seal surface . 164 
    References. 164 


    CHAPTER 8  Cryogenic gas lubrication of face seals 167 


    8.1  Fundamental equations167 


    8.1.1  Lubrication equations 168 


    8.1.2  Boundary conditions . 171 


    8.2  Phase change in gas lubrication film..172 


    8.3  Characteristics of thermoelastic distortions of seal faces 173 


    8.4  Characteristics of cryogenic gas lubrication173 


    8.4.1  Ambient temperature  174 


    8.4.2 Rotation speed.. 174 
    References. 177 


    CHAPTER 9  Surface grooves of gas face seals and testing technology.. 179 
    9.1  Surface grooves of gas face seals .179 


    9.2  Testing technology of gas face seals ..185 


    9.2.1  Experimental setup. 185 


    9.2.2  Face groove machining 185 


    9.2.3  Face morphology test 187 


    9.3  Experimental characteristics of gas face seals ..188 


    9.3.1  Seal opening characteristic  188 


    9.3.2  Hydrodynamic characteristics.. 190 


    Contents IX 
    9.3.3 Surface wear.. 192 
    References. 195 


    CHAPTER 10 Design of gas face seals  197 


    10.1 Force analysis of gas seals197 


    10.1.1 Opening force. 198 


    10.1.2 Closing force.. 198 


    10.1.3 O-ring friction force 199 


    10.2 Geometric parameters of gas face seals 199 


    10.2.1 Seal clearance. 199 


    10.2.2 Seal face width.. 199 


    10.2.3 Balance diameter.. 200 


    10.2.4 Seal face and shaft (shaft sleeve) clearance.. 200 


    10.3 Performance parameters of gas face seals201 


    10.3.1 Leakage rate  201 


    10.3.2 Gas film stiffness . 201 


    10.4 Materials of the seal couple .202 


    10.5 Dimension design of seal rings..202 


    10.5.1 Design of rotor dimension .. 202 


    10.5.2 Design of stator dimension . 203 


    10.5.3 Design of the face groove 204 


    10.6 Design of the secondary seal ..205 


    10.7 Process of seal design and illustration205 


    10.7.1 Process of seal design  205 


    10.7.2 Design conditions. 206 


    10.7.3 Design steps  206 
    References. 218 


    Index .219 


     

    前言
    Gas lubrication is a form of fluid lubrication, which uses air or working medium gas as a lubricant to separate two friction pairs moving in relation to each other. It has the advantages of low friction resistance, high working accuracy, and a wide range of applicable temperatures, and is widely used in the design of gas-eous static pressure bearings, high-speed thrust bearings, foil bearings, mechanical seals, and other mechanical parts and equipment under extreme conditions such as extremely high or low temperatures, ultra-high or -low speeds, and ultra-precision.

    Gas lubrication is a form of fluid lubrication, which uses air or working medium gas as a lubricant to separate two friction pairs moving in relation to each other. It has the advantages of low friction resistance, high working accuracy, and a wide range of applicable temperatures, and is widely used in the design of gas-eous static pressure bearings, high-speed thrust bearings, foil bearings, mechanical seals, and other mechanical parts and equipment under extreme conditions such as extremely high or low temperatures, ultra-high or -low speeds, and ultra-precision. 
    In 1854, Hirm came up with the idea of using gas as a lubricant. In 1886, Reynolds deduced the Reynold’s equation describing the pressure distribution of fluid lubrication film, which raised people’s understanding of the principle of fluid lubrication to a theoretical height. In the 1950s, research on gas lubrication theory based on bearing design requirements developed rapidly. In 1959, Elrod and Burgdorfer theoretically explained that the temperature rise effect inside the lubrication gas film could be ignored under general working conditions, and the isothermal hypothesis was generally accepted in gas lubrication analysis. After the 1980s, the development of magnetic storage technology pushed the film thick-ness of gas bearings from microns to nanometers, and microscopic effects such as the gas thinning effect and surface roughness were widely studied, which pro-moted the development of gas thin film lubrication theory. 
    With an increase of rotation speed in mechanical equipment and the appear-ance of new bearing structures, the problem of gas thermodynamic lubrication became increasingly prominent. For example, in a gas hydrostatic bearing under the conditions of a film thickness of 20 μm, pressure of 0.7 MPa, and rotation speed of 20,000 rpm, shear heat can cause the gas film lubrication temperature to rise above 30°C. The increase of rotor temperature rise and gas viscosity can improve the stiffness and damping coefficient of the bearing, but in the absence of sufficient cooling, the bearing is prone to thermal instability, which is particu-larly prominent in a high-speed bearing design. 
    Compared with bearing gas lubrication dominated by shear flow, there is also pressure flow caused by seal pressure in the gas seal lubrication area. In the pro-cess of gas leakage flow from the high-pressure side to the low-pressure side, gas film temperature decreases because of rapid volume expansion, resulting in ther-mal distortion and other gas thermohydrodynamic lubrication problems. 
    In 1968, the John Crane Company first developed the circular arc surface spiral groove gas-lubricated seal and introduced plane spiral groove gas-lubricated seal products. With the development of gas sealing technology to high-temperature, high-pressure, high-speed, and other high parameters; the diversification of sealing media; and the continuous expansion of application fields, the surface thermal dis-tortion, supersonic flow, media phase change, and other gas thermohydrodynamic lubrication problems are increasing. 
    Preface 
    Based on the research methods and results of elastohydrodynamic lubrication theory of Prof. Wen Shizhu, this book summarizes the research results of the authors in recent years. Grounded in the application background of lubrication design of high-speed gas bearings and high-pressure gas seals, theory and analysis methods of gas thermohydrodynamic lubrication are systematically expounded. In this book, theoretical model and lubrication characteristics of gas lubrication are discussed for typical bearings and seals. 
    The book is divided into 10 chapters. 
    In Chapter 1, Properties of gases, properties of gases are introduced. Based on the principle of energy equipartition, the ideal gas state equation is decomposed into two independent gas equations. 
    In Chapter 2, Gas lubrication equations, the derivation of the Reynolds equa-tion, energy equation, heat conduction equation, interface equation, and other basic lubrication equations are explained. The lubrication analysis of force bal-ance and flow conservation problems are also discussed. 
    In Chapter 3, Isothermal gas lubrication, we introduce the modeling method and basic lubrication characteristics of isothermal gas lubrication of typical struc-tures such as the slider bearing, radial bearing, thrust bearing, and face seal. 
    In Chapter 4, Gas thermohydrodynamic lubrication of rigid surfaces, the gas thermodynamic lubrication law of gas-lubricated bearings and low-pressure gas seals under high-speed working conditions are analyzed without consideration of surface distortions. 
    Chapter 5, Gas thermoelastichydrodynamic lubrication of face seals, discusses the high-pressure gas face seal, the modeling method of TEHL, and fundamental characteristics of choked flow effect, thermoelastic distortion of seal faces, and the temperature distribution of gas film. 
    In Chapter 6, Transient thermoelastichydrodynamic gas lubrication of face seals, targets the gas face seal, dynamic load characteristics of the seal gas film under the conditions of isothermal lubrication, rigid surface thermal lubrication, and TEHL, exploring these in detail. 
    Chapter 7, Vapor-condensed gas lubrication of face seals, explores the face seal of high-pressure gas, the law of condensation and precipitation of water vapor in the seal gas film, and the movement of liquid drops in the seal gap under TEHL conditions. 
    Chapter 8, Cryogenic gas lubrication of face seals, uses the inclined ellipse dimpled gas face seal as an example and natural gas as the sealing medium to introduce the modeling method of cryogenic gas lubrication and the fundamental characteristics of phase change in seal film and thermoelastic distortion of seal faces. 
    In Chapter 9, Surface grooves of gas face seals and testing technology, typical seal grooves and their laser processing methods and experimental measurement methods are presented. Opening characteristics, hydrodynamic characteristics, and friction characteristics of gas face seals are discussed by taking the micro-dimpled face seal as an example. 
    Preface III 
    In Chapter 10, Design of gas face seals, an internal flow single-face spiral groove gas seal is used as an example to introduce the basic method and design process of gas face seals. 
    In the process of compiling this book, Prof. Huang Ping has given great sup-port and help. Here I would like to express my sincere gratitude. At the same time, I would like to express my heartfelt thanks to my colleagues and graduate students who have given me warm support and help in the preparation of this book. 
    Bai Shaoxian 
    Hangzhou 


     

















     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部