[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

     经部  史类  子部  集部  古籍管理  古籍工具书  四库全书  古籍善本影音本  中国藏书
  •  文化

     文化评述  文化随笔  文化理论  传统文化  世界各国文化  文化史  地域文化  神秘文化  文化研究  民俗文化  文化产业  民族文化  书的起源/书店  非物质文化遗产  文化事业  文化交流  比较文化学
  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

     执业资格考试用书  室内设计/装潢装修  标准/规范  建筑科学  建筑外观设计  建筑施工与监理  城乡规划/市政工程  园林景观/环境艺术  工程经济与管理  建筑史与建筑文化  建筑教材/教辅  英文原版书-建筑
  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

     园艺  植物保护  畜牧/狩猎/蚕/蜂  林业  动物医学  农作物  农学(农艺学)  水产/渔业  农业工程  农业基础科学  农林音像
  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

  •  保健/养生

  •  体育/运动

  •  手工/DIY

  •  休闲/爱好

  •  英文原版书

  •  港台图书

  •  研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学

  •  音乐
     音乐理论

     声乐  通俗音乐  音乐欣赏  钢琴  二胡  小提琴
  • Theory and Modeling of Dispersed Multiphase Turbulent Reacti
    該商品所屬分類:工業技術 -> 一般工業技術
    【市場價】
    1092-1584
    【優惠價】
    683-990
    【作者】 周力行 
    【所屬類別】 圖書  教材  研究生/本科/專科教材  工學圖書  工業技術  一般工業技術 
    【出版社】清華大學出版社 
    【ISBN】9787302507543
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:平裝-膠訂

    是否套裝:否
    國際標準書號ISBN:9787302507543
    作者:周力行

    出版社:清華大學出版社
    出版時間:2018年08月 

        
        
    "

    產品特色
    編輯推薦
    多相湍流反應與湍動燃燒的扛鼎之作。 
    內容簡介
    本書在介紹多相流、湍流和燃燒理論的基礎上,給出了多相湍流反應流動的基本方程、單相湍流和多相湍流以及湍流燃燒的數學物理模型,討論了求解多相湍流反應流動的數值模擬方法,*後列舉了在不同燃燒裝置中的應用實例。
    本書適合高校和科研院所工程熱物理、流體力學、熱能動力等專業的師生和研究工作者閱讀。
    Fundamentals of multiphase flows, turbulent flows and combustion theory; Basic equations of multiphase turbulent reacting flows; modeling of turbulent flows; modeling of multiphase turbulent flows; modeling of turbulent combusting flows; numerical methods for simulation of multiphase turbulent reacting flows.
    關鍵詞:流體,湍動,多相反應,燃燒
    作者簡介
    周力行  男,清華大學航天航空學院工程力學繫教授,博士生導師。1932年出生於北京;1961年畢業於蘇聯列寧格勒工業大學物理-力學繫,獲得副博士(相當於西方國家Ph. D博士)學位。中國燃燒和多相流學術界的學術帶頭人之一,享受國務院特殊津貼。曾任清華大學煤的清潔燃燒國家重點實驗室學術委員會副主任,中國工程熱物理學會理事,中國力學學會多相流和非牛頓流專業組主任。國際多相流會議常設核心組中國代表.現任國際燃燒學會會員,、多相流和燃燒方面多種國際會議的國際學術委員,《國際清潔能源技術學報》、《國際計算多相流學報》、《燃燒科學與技術》(中國)編委。曾先後擔任美國多所大學的訪問教授,先後在美國、加拿大、德國、日本以及中國香港地區、臺灣地區進行合作研究和講學60多次,擔任國內多所大學的兼職教授。主要研究領域為多相流、湍流和燃燒。研究成果得到國內外公認,已出版中英文學術專著7部,在國內外期刊上發表學術論文300餘篇。SCI收錄、EI收錄、SCI他引均在數百篇以上。獲得2007年國家自然科學二等獎、1995年國家*科技進步一等獎、1995年電力部科技進步一等獎、1995年光華科技一等獎、1992年全國優秀電力科技圖書一等獎和多項省部級科技成果二等獎。
    目錄
    Preface i Nomenclature iii Introduction v
    1. Some Fundamentals of DispersedMultiphase Flows 1
    1.1 Particle/SprayBasic Properties 1
    1.1.1 Particle/DropletSize and Its Distribution 1
    1.1.2 ApparentDensity and Volume Fraction 2
    1.2 ParticleDrag, Heat, and Mass Transfer 2
    1.3 Single-ParticleDynamics 3
    1.3.1
    1.3.2
    1.3.3
    1.3.4
    1.3.5
    1.3.6
    References

    Preface i Nomenclature iii Introduction v


    1. Some Fundamentals of Dispersed
    Multiphase Flows 1


    1.1 Particle/Spray
    Basic Properties 1


    1.1.1        Particle/Droplet
    Size and Its Distribution 1


    1.1.2        Apparent
    Density and Volume Fraction 2


    1.2 Particle
    Drag, Heat, and Mass Transfer 2


    1.3 Single-Particle
    Dynamics 3


    1.3.1


    1.3.2


    1.3.3


    1.3.4


    1.3.5


    1.3.6


    References


    Single-Particle Motion Equation 3 Motion of
    a Single Particle in a Uniform Flow Field 4 Particle Gravitational Deposition 4
    Forces Acting on Particles in Nonuniform Flow Field 5


    1.3.4.1    Magnus
    Force 5


    1.3.4.2 Saffman Force    5


    1.3.4.3    Particle
    Thermophoresis, Electrophoresis, and Photophoresis 5 Generalized Particle
    Motion Equation 6 Recent Studies on Particle Dynamics 6 7


    Further Reading      8


     


     


    2. Basic Concepts and Description of
    Turbulence 9


    2.1 Introduction
    9


    2.2 Time
    Averaging 9


    2.3 Probability
    Density Function 10


    2.4 Correlations, Length, and Time Scales
    12 References 13


     


    3. Fundamentals of Combustion Theory         15


    3.1 Combustion
    and Flame 15


    3.2 Basic
    Equations of Laminar Multicomponent Reacting Flows and Combustion 16


    3.2.1        Thermodynamic
    Relationships of Multicomponent Gases 16


    xiii


    3.2.2        Molecular
    Transport Laws of Multicomponent Reacting Gases 18


    3.2.3        Basic
    Relationships of Chemical Kinetics 19


    3.2.4        The
    Reynolds Transport Theorem 20


    3.2.5        Continuity
    and Diffusion Equations 21


    3.2.6        Momentum
    Equation 22


    3.2.7        Energy
    Equation 23


    3.2.8        Boundary
    Conditions at the Interface and Stefan Flux 26


    3.3 Ignition and Extinction      30


    3.3.1        Basic
    Concept 30


    3.3.2        Dimensional
    Analysis 30


    3.3.3        Ignition
    in an Enclosed Vessel—Simonov’s Unsteady Model 31


    3.3.4        Ignition
    Lag (Induction Period) 34


    3.3.5        Ignition
    by a Hot Plate—Khitrin-Goldenberg Model 35


    3.3.6        Ignition
    and Extinction—Vulis Model 37


    3.4 Laminar Premixed and Diffusion
    Combustion 41


    3.4.1        Background
    41


    3.4.2        Basic
    Equations and Their Properties 41


    3.4.3        Two-Zone
    Approximate Solution 43


    3.4.4        Laminar
    Diffusion Flame 46


    3.5 Droplet Evaporation and Combustion      47


    3.5.1        Background
    47


    3.5.2        Droplet
    Evaporation in Stagnant Air 48


    3.5.3        Basic
    Equations for Droplet Evaporation and Combustion 48


    3.5.4        Droplet
    Evaporation With and Without Combustion 49


    3.5.5        Droplet
    Evaporation and Combustion under Forced Convection 50


    3.5.6        The
    d2 Law 52


    3.5.7        Experimental
    Results 52


    3.5.8        Droplet
    Ignition and Extinction 54


    3.6 Solid-Fuel: Coal-Particle Combustion        54


    3.6.1        Background
    54


    3.6.2        Coal
    Pyrolyzation (Devolatilization) 55


    3.6.3        Carbon
    Oxidation 56


    3.6.4        Carbon
    Oxidation—Basic Equations 56


    3.6.5        Carbon
    Oxidation—Single-Flame-Surface Model-Only Reaction 1 or 2 at the Surface 57


    3.6.6        Carbon
    Oxidation—Two-Flame-Surface Model 60


    3.6.7        Coal-Particle
    Combustion 62


    3.7 Turbulent Combustion and Flame
    Stabilization        64


    3.7.1        Background
    64


    3.7.2        Turbulent
    Jet Diffusion Flame 64


    3.7.3        Turbulent
    Premixed Flame—Damkohler-Shelkin’s Wrinkled-Flame Model 66


    Contents xY


    3.7.4        Turbulent
    Premixed Flame—Summerfield-Shetinkov’s Volume Combustion Model 67


    3.7.5        Flame
    Stabilization 67


    3.8 Conclusion on Combustion Fundamentals
    69 References 69


     


    4.    Basic
    Equations of Multiphase Turbulent Reacting Flows 71


    4.1 The
    Control Volume in a Multiphase-Flow System 71


    4.2 The
    Concept of Volume Averaging 72


    4.3 “Microscopic”
    Conservation Equations Inside Each Phase 73


    4.4 The
    Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase
    Flows 73


    4.5 The
    Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows 78


    4.6 The
    PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged
    Equations 80


    4.7 The
    Two-Phase Reynolds Stress and Scalar Transport Equations 83 References 87


     


    5.    Modeling
    of Single-Phase Turbulence 89


    5.1 Introduction
    89


    5.2 The
    Closure of Single-Phase Turbulent Kinetic Energy Equation 90


    5.3 The
    k-ε Two-Equation Model and Its Application 92


    5.4 The
    Second-Order Moment Closure of Single-Phase Turbulence 96


    5.5 The
    Closed Model of Reynolds Stresses and Heat Fluxes 99


    5.6 The
    Algebraic Stress and Flux Models—Extended k-ε Model 101


    5.7 The
    Application of DSM and ASM Models and Their Comparison with Other Models 103


    5.8 Large-Eddy
    Simulation 112


    5.8.1        Filtration
    112


    5.8.2        SGS
    Stress Models 113


    5.8.3        LES
    of Swirling Gas Flows 114


    5.9 Direct Numerical Simulation 116
    References 119


     


    6.    Modeling
    of Dispersed Multiphase Turbulent Flows 121


    6.1 Introduction
    121


    6.2 The
    Hinze-Tchen’s Algebraic Model of Particle Turbulence 124


    6.3 The
    Unified Second-Order Moment Two-Phase Turbulence Model 124


    6.4 The
    k 2 ε 2 kp and k 2 ε 2 Ap Two-Phase Turbulence Model 128


    6.5 The
    Application and Validation of USM, k 2 ε 2 kp -kpg and k 2 ε 2 Ap Models 129


    6.6 An
    Improved Second-Order Moment Two-Phase Turbulence Model 134


    6.7 The
    Mass-Weighted Averaged USM Two-Phase Turbulence Model 136


    6.8 The
    DSM-PDF and k 2 ε-PDF Two-Phase Turbulence Models 141


    6.9 An
    SOM-MC Model of Swirling Gas-Particle Flows 144


    6.10         The
    Nonlinear k 2 ε 2 kp Two-Phase Turbulence Model 146


    6.11         The
    Kinetic Theory Modeling of Dense Particle (Granular) Flows 150


    6.12         Two-Phase
    Turbulence Models for Dense Gas-Particle Flows 153


    6.13         The
    Eulerian-Lagrangian Simulation of Gas-Particle Flows 155


    6.13.1     Governing
    Equations for the Deterministic Trajectory Model 156


    6.13.2     Modification
    for Particle Turbulent Diffusion 157


    6.13.3     The
    Stochastic Trajectory Model 159


    6.13.4     The
    DEM Simulation of Dense Gas-Particle Flows 161


    6.14         The
    Large-Eddy Simulation of Turbulent Gas-Particle Flows 163


    6.14.1     Eulerian-Lagrangian
    LES of Swirling Gas-Particle Flows 165


    6.14.2     Eulerian-Lagrangian
    LES of Bubble-Liquid Flows 166


    6.14.3     Two-Fluid
    LES of Swirling Gas-Particle Flows 167


    6.14.4     Application
    of LES in Engineering Gas-Particle Flows 170


    6.15         The
    Direct Numerical Simulation of Dispersed Multiphase Flows 172 References 177


     


    7.    Modeling
    of Turbulent Combustion 183


    7.1 Introduction
    183


    7.2 The
    Time-Averaged Reaction Rate 183


    7.3 The
    Eddy-Break-Up (EBU) Model/Eddy Dissipation Model (EDM) 184


    7.4 The
    Presumed PDF Models 186


    7.4.1        The
    Probability Density Distribution Function 186


    7.4.2        The
    Simplified PDF-Local Instantaneous Nonpremixed Fast-Chemistry Model 187


    7.4.3        The
    Simplified PDF-Local Instantaneous Equilibrium Model 191


    7.4.4        The
    Simplified-PDF Finite-Rate Model 194


    7.5 The
    PDF Transport Equation Model 198


    7.6 The
    Bray-Moss-Libby (BML) Model 200


    7.7 The
    Conditional Moment Closure (CMC) Model 201


    7.8 The
    Laminar-Flamelet Model 202


    Contents xYii


    7.9 The
    Second-Order Moment Combustion Model 204


    7.9.1 The Early Developed Second-Order
    Moment Model 204


    7.9.2 An Updated Second-Order Moment (SOM)
    Model 207


    7.9.3 Application of the SOM Model in RANS
    Modeling 208


    7.9.4 Validation of the SOM Model by DNS    212


    7.10         Modeling
    of Turbulent Two-Phase Combustion 215


    7.10.1     Two-Fluid
    Modeling of Turbulent Two-Phase Combustion 216


    7.10.2     Two-Fluid-Simulation
    of Coal Combustion in a Combustor with High-Velocity Jets 218


    7.10.3     Two-Fluid
    Modeling of Coal Combustion and NO Formation in a Swirl Combustor 221


    7.10.4     Eulerian-Lagrangian
    Modeling of Two-Phase Combustion 223


    7.11         Large-Eddy
    Simulation of Turbulent Combustion 224


    7.11.1     LES
    Equations and Closure Models for Simulating Gas Turbulent Combustion 224


    7.11.2     LES
    of Swirling Diffusion Combustion, Jet Diffusion Combustion, and Bluff-Body
    Premixed Combustion 226


    7.11.3     LES
    of Ethanol-Air Spray Combustion 232


    7.11.4     LES
    of Swirling Coal Combustion 235


    7.12 Direct Numerical Simulation of
    Turbulent Combustion 242 References 249


     


    8.    The
    Solution Procedure for Modeling Multiphase Turbulent Reacting Flows 253


    8.1 The
    PSIC Algorithm for Eulerian-Lagrangian Models 253


    8.2 The
    LEAGAP Algorithm for E-E-L Modeling 256


    8.3 The
    PERT Algorithm for Eulerian-Eulerian Modeling 257


    8.4 The
    GENMIX-2P and IPSA Algorithms for Eulerian-Eulerian Modeling 257 References 260


     


    9.    Simulation
    of Flows and Combustion in Practical Fluid Machines, Combustors, and Furnaces
    261


    9.1 An
    Oil-Water Hydrocyclone 261


    9.2 A
    Gas-Solid Cyclone Separator 262


    9.3 A
    Nonslagging Vortex Coal Combustor 266


    9.4 A
    Spouting-Cyclone Coal Combustor 268


    9.5 Pulverized-Coal
    Furnaces 273


    9.6 Spray
    Combustors 290


    9.7 Concluding Remarks 307 References 308


    Index       311

    前言
    Multiphase, turbulent, and reacting flows are widely encountered in engi-neering and the natural environment. The basic theory, phenomena, mathe-matical models, numerical simulations, and applications of multiphase (gas or liquid flows with particles/droplets or bubbles), turbulent reacting flows are presented in this book. The special feature of this book is in combining the multiphase fluid dynamics with the turbulence modeling theory and reacting fluid dynamics (combustion theory). There are nine chapters in this book, namely: “Fundamentals of Dispersed Multiphase Flows”; “Basic Concepts and Description of Turbulence”; “Fundamentals of Combustion Theory”; “Basic Equations of Multiphase Turbulent Reacting Flows”; “Modeling of Single-Phase Turbulent Flows”; “Modeling of Dispersed Multiphase Turbulent Flows”; “Modeling of Turbulent Combustion”; “The Solution Procedure for Modeling Multiphase Turbulent Reacting Flows”; and “Simulation of Flows and Combustion in Practical Fluid Machines, Combustors and Furnaces.” The main difference between this book and pre-vious books written by the author is that more much better descriptions of basic equations and closure models of multiphase turbulent reacting flows are introduced, and recent advances made by the author and other investiga-tors between 1994 and 2016 are included. This book serves as a reference book for teaching, research, and engi-neering design for faculty members, students, and research engineers in the fields of fluid dynamics, thermal science and engineering, aeronautical, astronautical, chemical, metallurgical, petroleum, nuclear, and hydraulic engineering. The author wishes to thank Prof. F.G. Zhuang, H.X. Zhang, and C.K. Wu for their valuable comments and suggestions. Thanks also go to colleagues and former students: Prof. W.Y. Lin, R.X. Li, X.L. Wang, J. Zhang, B. Zhou, Y.C. Guo, H.Q. Zhang, L.Y. Hu, Y. Yu, F. Wang, Z.X. Zeng, K. Li, Y. Zhang; Drs. Gene X.Q. Huang, T. Hong, C.M. Liao, W.W. Luo, K.M. Sun, Y. Li, T. Chen, Y. Xu, G. Luo, M. Yang, L. Li, H.X. Gu, X.L. Chen, X. Zhang, and Y. Liu. Their research results under the direction and coopera-tion of the author contributed to the context of this book. Finally, the author’s gratitude is given to the editors from Elsevier and the Executive Editor, Dr. Qiang Li from the Tsinghua University Press for their hard work in the final editing and publishing of this book. Any comments and suggestions from the experts and readers would be highly appreciated. Lixing Zhou Tsinghua University, Beijing, China February, 2017
    在線試讀
    Chapter 1Chapter 1 
    Some Fundamentals of Dispersed Multiphase Flows 1.1 PARTICLE/SPRAY BASIC PROPERTIES To characterize gas-particle or gas-spray flows, it is necessary first to describe the particle/spray basic properties [1-4] as follows. 1.1.1 Particle/Droplet Size and Its Distribution The particle/droplet size distribution is frequently expressed by the semiem-pirical Rosin-Rammler formula as: RedkT 5 exp. 2 edk =dTnJe1:1T where R(dk) is the weight fraction of particles with sizes larger than dk, n is the index of nonuniformness, and d is a characteristic size. Both n and d are determined by experiments. The derivative of R(dk) is dR 5 nedkTn21edT2n exp 「 2 edk =dTn1 e1:2T dedkT which expresses the differential particle size distribution, and R(dk) is the integral size distribution. The mean particle sizes can be defined as: XX d10 5 nkdk = nk d20 5(X nkdk 2 = X nk)1=2 (X X)1=3 e1:3T d30 5X nkdk 3 ( = X nk)d32 5 nkdk 3 =nkdk2 where d10; d20; d30; and d32 are diameter-averaged, surface-averaged, volume-averaged, and Sauter mean sizes, respectively. The Sauter diameter is most widely used in engineering. The typical particle sizes are: Coal particles in fluidized beds 1-10 mm Liquid spray 10-200 μm Pulverized coal 1-100 μm Soot particles 1-5 μm 1.1.2 Apparent Density and Volume Fraction For gas-particle/droplet flows there are differently defined densities. The relationships among them are: X (X)ρm 5 ρ 1 ρp 5 ρ 1 ρk 5 ρ 1 nkπd3 =6ρp e1:4Tk where ρ; ρ; ρ; ρk; and ρare mixture density, fluid apparent density, parti-mp cletotalapparpent density, k-th size particle apparent density and particle material density, respectively. The particle volume fraction and fluid volume fraction are defined as: αp 5 ρ=ρ; αf 5 1 2 αp 5 1 2 ρ=ρe1:5Tpppp For dilute gas-particle flows we have: ρ 5 ρe1 2 ρp =ρpT~ρ where ρ is the fluid material density. Obviously, the fluid apparent density in dilute gas-particle flows is almost equal to the fluid material density. The so-called mass loading, which is the ratio of particle mass flux to fluid mass flux, is defined as ρp0up0 =eρ0u0T.When the fluid initial velocity is equal to the particle initial velocity, the mass loading is equal to the ratio of apparent densities. For example, in spray or pulverized-coal flames the typical value of the mass loading is: ρp =ρ 5 1=15 5 ρρ p 1 2 αp αp~1000 1 2 αp αp namely, αp , 0.01%, hence the spray flame and pulverized-coal flame are dilute gas-particle flows. Other examples are: pneumatic transport αp~0.1% (mass loading~1), fluidized beds and flows in gun barrels αp~0.8-1. It can be seen that when αp 5 0.1%, due to 1 5 1000nπd3/6, the average inter-particle size will be: Δ~n 21=3 5 e1000π=6T1=3dp 5 8:1dp: Δ . 20dp 1.2 PARTICLE DRAG, HEAT, AND MASS TRANSFER For different ranges of particle Reynolds number the particle drag is given as: Newton drag formula: cd 5 0:44 eRep . 1000T Wallis-Kliachko drag formula: cd 5 e1 1 Re2=3=6T24=Repe1 , Rep , 1000T p Stokes drag formula: cd 5 24=RepeRep , 1Te1:6T where Rep is the particle Reynolds number of particle motion relative to fluid. When the particle temperature is higher than the gas temperature, the Some Fundamentals of Dispersed Multiphase Flows Chapter | 1 particle drag will increase according to the so-called 1/3 law. The gas viscos-ity in the particle Reynolds number will be: ν 5 νp =3 1 2νg =3 e1:7T where the subscripts p and g denote the gas viscosity under the particle tem-perature and gas temperature, respectively. The particle mass loss due to evaporation, devolatilization, or heterogeneous combustion will reduce the particle drag to:  cd 5 cd0lne1 1 BT=B  e1:8T  where B is a dimensionless parameter given by  lne1 1 BT 5 _m=eπdpNuDρT  e1:9T  
    The particle heat and mass transfer are given by the Ranz-Marshell formula: Pr0:33Nu 5 2 1 0:6Re0:5 p e1:10T Sc0:33Sh 5 2 1 0:6Re0:5 p where Nu, Sh, Re, Pr, and Sc are the Nusselt number, Shewood number, Reynolds number, Prandtl number, and Schmidt number, respectively. The droplet mass, diameter, and temperature change during evaporation and solid-fuel particle mass and temperature change during moisture evaporation, devolatilization, and char combustion are given in the combustion theory, see Chapter 3, Fundamentals of Combustion. 1.3 SINGLE-PARTICLE DYNAMICS Consider the single-particle motion in a known simple flow field and neglect the effect of particles on the fluid flow; this is single-particle dynamics [6]. For turbulent gas-particle flows single-particle dynamics is a basic phenome-non observed in practical cases. 1.3.1 Single-Particle Motion Equation Taking into consideration only the drag and gravitational forces, the simplest single-particle motion equation can be given as: dvpi 5 evi 2 vpiT=τr 1 gi e1:11T dtp where τr is the particle relaxation time, expressing the ratio of particle inertia to particle drag, determined by the drag law. 1.3.2 Motion of a Single Particle in a Uniform Flow Field Assuming a particle with initial velocity vP0 and Stokes’ drag law, moving in a uniform flow field (Fig. 1.1), when neglecting the gravitational force, the particle momentum equation in the x direction is dup 5 euN 2 upT=τr e1:12T dt where τr 5 d2ρ=e18μT. Integration of Eq. (1.12) with an initial condition of pp up 5 up0 at t 5 0 gives the particle longitudinal velocity up 5 uN 2 euN 2 up0T expe2 t=τrTe1:13T The particle lateral velocity can be obtained in a similar way as vp 5 vp0 expe2 t=τrTe1:14T Integration of Eqs. (1.13) and (1.14) with respect to t gives the particle trajectory equations as 2t=τr Txp 5 uNt 2 euN 2 up0Tτre1 2 e e1:15T 2t=τr Typ 5 vp0τre1 2 e Similar equations can also be derived for non-Stokes’ particle drag. Eqs. (1.13, 1.14, 1.15) point out that as the time approaches N, the particle longi-tudinal velocity approaches the fluid velocity, the particle lateral velocity approaches zero and the particle lateral displacement approaches y 5 vp0τr. When t 5 τr, we have vp 5 vp0 =τr. Hence the physical meaning of the particle relaxa-tion time is the time needed for the fluid-particle velocity slip to decrease to 1/e of its initial value. It expresses the easiness with which particles follow the fluid. 1.3.3 Particle Gravitational Deposition For an initially stagnant particle acting only by Stokes’ drag and gravity, the motion equation is: dvp vp12 g 5 0 e1:16T dt τr 
    Some Fundamentals of Dispersed Multiphase Flows Chapter | 1 For the initial condition of vp0 5 0 at t 5 0, its solution is: 2t=τr Tvp 5 τrge1 2 e e1:17T As the time approaches infinity, vp approaches τrg 5 vpr, the particle acceleration becomes zero and the gravity and drag force will be in equilib-rium. In this case the particle velocity is called the terminal velocity. 1.3.4 Forces Acting on Particles in Nonuniform Flow Field 1.3.4.1 Magnus Force As a nonspherical particle moves in the flow field with velocity gradient, in particular after its impact on the wall, it may rotate, causing a lifting force perpendicular to the direction of relative velocity, called the Magnus force. Its magnitude is: FM 5 πd3ρjv 2 vpjjωp 2 Ωje1:18T p where ωp is the angular velocity of particle rotation, and Ω is the half of fluid vorticity. It has been estimated that the ratio of Magnus force to the drag force is 0.04 for a 1-μm particle and 3 for a 10-μm particle. However, experimental studies have shown that in most regions of the flow field, particles do not rotate due to fluid viscosity. Therefore, except in the region adjacent to the wall, the Magnus force is not important. 
    1.3.4.2 Saffman Force If the particle is sufficiently large and there is a large velocity gradient in the flow field (for example, near the wall), there will be a particle-lifting force called the Saffman force. Its magnitude is      @v 1=2 5 1:6eμρT1=2d2    
    Fs v 2 vpe1:19T p  @y The ratio of the Saffman force to the Magnus force is much greater than unity; hence the Saffman force may play an important role, in particular in the region of a large velocity gradient, such as in the recirculation region and the near-wall region. 
    1.3.4.3 Particle Thermophoresis, Electrophoresis, and Photophoresis Tiny particles smaller than 1 μm may move under the effects of so-called “thermophoresis,” “electrophoresis,” and “photophoresis,” caused by a large temperature gradient, electric field gradient, and nonuniform light radiation, respectively. The forces of thermophoresis and electrophoresis can be estimated by FTj 524:5ν2eρ=TTdp 「 λe2λ 1λpT1@T @xj e1:20T FE 5eπ=6Tρd3qEpp where λ and λp are the gas and particle thermoconductivities, respectively, and E and q are electric field strength and particle electric charge, respec-tively. All of these forces are significant merely for submicron or ultrafine particles. 1.3.5 Generalized Particle Motion Equation Eq. (1.11) is a very simple particle motion equation. C.M. Tchen [7], using a method of intuitive superposition of various possible forces, proposed a generalized particle motion equation, with Stoke drag and accounting for the Magnus force, Saffman force, thermophoresis, and electrophoresis forces, as dvpi mp 5Fdi 1Fvmi 1Fpi 1FBi 1FMi 1Fsi 1FTi 1FEi 1 
    dtp ...: 53πdpμevi 2vpiT 10:5eπd3 =6Tρ dtdp evi 2vpiT 1 p e1:21T t e dvi d eπd3 =6Tρ11:5eπρμT1=2d2 evi 2vpiTeτ 2tTdτ 1 p dt pdτ2N FMi 1Fsi 1FTi 1FEi 1...: where the first, second, third, and fourth terms on the right-hand side of Eq. (1.21) denote the drag force, virtual-mass force, pressure-gradient force, and Basset force (due to unsteady flow), respectively. It should be noted that in most cases the forces other than the drag force are of minor importance, so the approximation made in Eq. (1.11) is still valid. 1.3.6 Recent Studies on Particle Dynamics Sommerfeld and Kussin [8] studied the forces acting on particles of irregular shapes. Zhang and Lin [9] studied the motion, its orientation, and forces act-ing on elliptical particles. Bagchi and Balachandar [10] give the detailed flow field around a single particle using direct numerical simulation (DNS). Sundaresan and Cate [11] show the detailed flow field around several Some Fundamentals of Dispersed Multiphase Flows Chapter | 1 particles using a Lattice-Boltzmann simulation. From these simulation results the exact forces acting on the particles can be obtained. For example, it is found that the virtual mass force can be neglected, if the ratio of the fluid material density to the particle material density is small. The effect of small-scale t







     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部