[ 收藏 ] [ 繁体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

     经部  史类  子部  集部  古籍管理  古籍工具书  四库全书  古籍善本影音本  中国藏书
  •  文化

     文化评述  文化随笔  文化理论  传统文化  世界各国文化  文化史  地域文化  神秘文化  文化研究  民俗文化  文化产业  民族文化  书的起源/书店  非物质文化遗产  文化事业  文化交流  比较文化学
  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

     执业资格考试用书  室内设计/装潢装修  标准/规范  建筑科学  建筑外观设计  建筑施工与监理  城乡规划/市政工程  园林景观/环境艺术  工程经济与管理  建筑史与建筑文化  建筑教材/教辅  英文原版书-建筑
  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

     园艺  植物保护  畜牧/狩猎/蚕/蜂  林业  动物医学  农作物  农学(农艺学)  水产/渔业  农业工程  农业基础科学  农林音像
  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

  •  保健/养生

  •  体育/运动

  •  手工/DIY

  •  休闲/爱好

  •  英文原版书

  •  港台图书

  •  研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学

  •  音乐
     音乐理论

     声乐  通俗音乐  音乐欣赏  钢琴  二胡  小提琴
  • 輕質夾層板結構的聲振耦合理論(英文版)
    該商品所屬分類:工業技術 -> 一般工業技術
    【市場價】
    892-1292
    【優惠價】
    558-808
    【作者】 TianJian 
    【所屬類別】 圖書  工業技術  一般工業技術 
    【出版社】科學出版社 
    【ISBN】9787030413222
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:平裝

    是否套裝:否
    國際標準書號ISBN:9787030413222
    作者:TianJian

    出版社:科學出版社
    出版時間:2014年11月 

        
        
    "

    編輯推薦
    《輕質夾層板結構的聲振耦合理論(英文版)》涉及多個學科領域,面較廣,所以讀者群面也較大,可作為面向結構振動和聲學工程專業的高年級學生教學用書和參考書,也可供相關專業的研究人員、工程技術人員參考。 
    內容簡介
    《輕質夾層板結構的聲振耦合理論(英文版)》的內容主要包括:第一部分,雙板空腔結構聲振耦合特性理論與實驗研究,主要針對高速機車、大型客機及高檔居民樓上所采用的雙層玻璃窗及雙層殼體結構的聲振耦合特性開展理論與實驗研究;第二部分,外部流場作用下板殼結構聲振耦合特性理論研究,重點考慮了飛機在巡航飛行狀態時外部平均流對飛機噴氣發動機產生的噪聲從艙外傳入艙內的物理過程;第三部分,正交加筋夾層板結構聲振耦合特性理論研究,重點分析討論了水面艦艇和潛水艇外殼結構經常使用的正交加筋夾層板結構的聲輻射特性和結構傳聲特性;第四部分,填充吸聲材料夾層板結構聲振耦合特性研究及優化設計,主要理論研究了航空航天飛行器中常用到的層芯空腔填充多孔纖維吸聲材料的加筋夾層板結構的聲振耦合特性及其結構優化設計;第五部分,研究展望,結合國家重大項目發展需求,展望了復雜周期加筋板殼結構在外部聲場及流場作用下的聲振耦合特性未來的研究趨勢,提出了值得進一步深入研究的幾個問題。
    作者簡介
     
    目錄
    1Transmission of Sound Through Finite Multiple-Panel Partition
    1.1Simply Supported Finite Double-Panel Partitions
    1.1.1Introduction
    1.1.2Vibroacoustic Theoretical Modeling
    1.1.3Mathematic Formulation and Solution
    1.1.4Convergence Check for Numerical Results
    1.1.5Model Validation
    1.1.6Effects of Air Cavity Thickness
    1.1.7Effects of Panel Dimensions
    1.1.8Effects of Incident Elevation Angle and Azimuth Angle
    1.1.9Conclusions
    1.2Clamped Finite Double-Panel Partitions
    1.2.1Introduction
    1.2.2Modeling of the Vibroacoustic Coupled System1Transmission of Sound Through Finite Multiple-Panel Partition
    1.1Simply Supported Finite Double-Panel Partitions
    1.1.1Introduction
    1.1.2Vibroacoustic Theoretical Modeling
    1.1.3Mathematic Formulation and Solution
    1.1.4Convergence Check for Numerical Results
    1.1.5Model Validation
    1.1.6Effects of Air Cavity Thickness
    1.1.7Effects of Panel Dimensions
    1.1.8Effects of Incident Elevation Angle and Azimuth Angle
    1.1.9Conclusions
    1.2Clamped Finite Double-Panel Partitions
    1.2.1Introduction
    1.2.2Modeling of the Vibroacoustic Coupled System
    1.2.3Model Validation
    1.2.4Finite Versus Infinite Double-Panel Partition
    1.2.5Effects of Panel Thickness on STL
    1.2.6Effects of Air Cavity Thickness on STL
    1.2.7Effects of Incident Angles on STL
    1.2.8Conclusions
    1.2.9Sound Transmission Measurements
    1.2.10Relationships Between Clamped and Simply Supported Boundary Conditions
    1.2.11Conclusions
    1.3Clamped Finite Triple-Panel Partitions
    1.3.1Introduction
    1.3.2Dynamic Structural Acoustic Formulation
    1.3.3The Principle of Virtual Work
    1.3.4Determination of Modal Coefficients
    1.3.5Sound Transmission Loss
    1.3.6Model Validation
    1.3.7Physical Interpretation of STL Dips
    1.3.8Comparison Among Single-, Double-, and Triple-Panel Partitions with Equivalent Total Mass
    1.3.9Asymptotic Variation of STL Versus Frequency Curve from Finite to Infinite System
    1.3.10Effects of Panel Thickness
    1.3.11Effects of Air Cavity Depth
    1.3.12Concluding Remarks
    Appendices
    Appendix A
    Appendix B
    References
    2Vibroacoustics of Uniform Structures in Mean Flow
    2.1Finite Single-Leaf Aeroelastic Plate
    2.1.1Introduction
    2.1.2Modeling of Aeroelastic Coupled System
    2.1.3Effects of Mean Flow in Incident Field
    2.1.4Effects of Mean Flow in Transmitted Field
    2.1.5Effects of Incident Elevation Angle in the Presence of Mean Flow on Both Incident Side and Transmitted Side
    2.1.6Conclusions
    2.2Infinite Double-Leaf Aeroelastic Plates
    2.2.1Introduction
    2.2.2Statement of the Problem
    2.2.3Formulation of Plate Dynamics
    2.2.4Consideration of Fluid-Structure Coupling
    2.2.5Definition of Sound Transmission Loss
    2.2.6Characteristic Impedance of an Infinite Plate
    2.2.7Physical Interpretation for the Appearance of STL Peaks and Dips
    2.2.8Effects of Mach Number
    2.2.9Effects of Elevation Angle
    2.2.10Effects of Azimuth Angle
    2.2.11Effects of Panel Curvature and Cabin Internal Pressurization
    2.2.12Conclusions
    2.3Double-Leaf Panel Filled with Porous Materials
    2.3.1Introduction
    2.3.2Problem Description
    2.3.3Theoretical Model
    2.3.4Validation of Theoretical Model
    2.3.5Influence of Porous Material and the Faceplates
    2.3.6Influence of Porous Material Layer Thickness
    2.3.7Influence of External Mean Flow
    2.3.8Influence of Incident Sound Elevation Angle
    2.3.9Influence of Sound Incident Azimuth Angle
    2.3.10Conclusion
    Appendix
    Mass-Air-Mass Resonance
    Standing-Wave Attenuation
    Standing-Wave Resonance
    Coincidence Resonance
    References
    3Vibroacoustics of Stiffened Structures in Mean Flow
    3.1Noise Radiation from Orthogonally Rib-Stiffened Plates
    3.1.1Introduction
    3.1.2Theoretical Formulation
    3.1.3Effect of Mach Number
    3.1.4Effect of Incidence Angle
    3.1.5Effect of Periodic Spacings
    3.1.6Concluding Remarks
    3.2Transmission Loss of Orthogonally Rib-Stiffened Plates
    3.2.1Introduction
    3.2.2Theoretical Formulation
    3.2.3Model Validation
    3.2.4Effects of Mach Number of Mean Flow
    3.2.5Effects of Rib-Stiffener Spacings
    3.2.6Effects of Rib-Stiffener Thickness and Height
    3.2.7Effects of Elevation and Azimuth Angles of Incident Sound
    3.2.8Conclusions
    Appendices
    Appendix A
    Appendix B
    References
    4Sound Transmission Across Sandwich Structures with Corrugated Cores
    4.1Introduction
    4.2Development of Theoretical Model
    4.3Effects of Core Topology on Sound Transmission Across the Sandwich Structure
    4.4Physical Interpretation for the Existence of Peaks and Dips on STL Curves
    4.5Optimal Design for Combined Sound Insulation and Structural Load Capacity
    4.6Conclusion
    References
    5Sound Radiation, Transmission of Orthogonally Rib-Stiffened Sandwich Structures
    5.1Sound Radiation of Sandwich Structures
    5.1.1Introduction
    5.1.2Theoretical Modeling of Structural Dynamic Responses
    5.1.3Solutions
    5.1.4Far-Field Radiated Sound Pressure
    5.1.5Validation of Theoretical Modeling
    5.1.6Influences of Inertial Effects Arising from Rib-Stiffener Mass
    5.1.7Influence of Excitation Position
    5.1.8Influence of Rib-Stiffener Spacings
    5.1.9Conclusions
    5.2Sound Transmission Through Sandwich Structures
    5.2.1Introduction
    5.2.2Analytic Formulation of Panel Vibration and Sound Transmission
    5.2.3The Acoustic Pressure and Continuity Condition
    5.2.4Solution of the Formulations with the Virtual Work Principle
    5.2.5Virtual Work of Panel Elements
    5.2.6Virtual Work of x-Wise Rib-Stiffeners
    5.2.7Virtual Work of y-Wise Rib-Stiffeners
    5.2.8Combination of Equations
    5.2.9Definition of Sound Transmission Loss
    5.2.10Convergence Check for Space-Harmonic Series Solution .
    5.2.11Validation of the Analytic Model
    5.2.12Influence of Sound Incident Angles
    5.2.13Influence of Inertial Effects Arising from Rib-Stiffener Mass
    5.2.14Influence of Rib-Stiffener Spacings
    5.2.15Influence of Airborne and Structure-Borne Paths
    5.2.16Conclusions
    Appendices
    Appendix A
    Appendix B
    References
    6Sound Propagation in Rib-Stiffened Sandwich Structures with Cavity Absorption
    6.1Sound Radiation of Absorptive Sandwich Structures
    6.1.1Introduction
    6.1.2Structural Dynamic Responses to Time-Harmonic Point Force
    6.1.3The Acoustic Pressure and Fluid-Structure Coupling
    6.1.4Far-Field Sound-Radiated Pressure
    6.1.5Convergence Check for Numerical Solution
    6.1.6Validation of Theoretical Modeling
    6.1.7Influence of Air-Structure Coupling Effect
    6.1.8Influence of Fibrous Sound Absorptive Filling Material
    6.1.9Conclusions
    6.2Sound Transmission Through Absorptive Sandwich Structure
    6.2.1Introduction
    6.2.2Analytic Formulation of Panel Vibration and Sound Transmission
    6.2.3Application of the Periodicity of Structures
    6.2.4Solution by Employing the Virtual Work Principle
    6.2.5Model Validation
    6.2.6Effects of Fluid-Structure Coupling on Sound Transmission
    6.2.7Sound Transmission Loss Combined with Bending Stiffness and Structure Mass: Optimal Design of Sandwich
    6.2.8Conclusions
    Appendices
    Appendix A
    Appendix B
    Appendix C
    References
    前言
     
    媒體評論
     
    在線試讀
    Chapter 1 Transmission of Sound Through Finite Multiple-Panel Partition
    Abstract This chapter is organized as three parts: in the .rst part, the vibroacoustic performance of a rectangular double-panel partition with enclosed air cavity and simply mounted on an in.nite acoustic rigid baf.e is investigated analytically. The sound velocity potential method rather than the commonly used cavity modal function method is employed, which possesses good expandability and has signif-icant implications for further vibroacoustic investigations. The simply supported boundary condition is accounted for by using the method of modal function, and double Fourier series solutions are obtained to characterize the vibroacoustic behav-iors of the structure. Results for sound transmission loss (STL), panel vibration level, and sound pressure level are presented to explore the physical mechanisms of sound energy penetration across the .nite double-panel partition. Speci.cally, focus is placed upon the in.uence of several key system parameters on sound transmission, including the thickness of air cavity, structural dimensions, and the elevation angle and azimuth angle of the incidence sound. Further extensions of the sound velocity potential method to typical framed double-panel structures are also proposed.
    In the second part, the air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an in.nite acoustic rigid baf.e is inves-tigated both analytically and experimentally, and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to in.nite where no boundaries exist. The signi.cant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel de.ection mode shapes.Chapter 1 Transmission of Sound Through Finite Multiple-Panel Partition
    Abstract This chapter is organized as three parts: in the .rst part, the vibroacoustic performance of a rectangular double-panel partition with enclosed air cavity and simply mounted on an in.nite acoustic rigid baf.e is investigated analytically. The sound velocity potential method rather than the commonly used cavity modal function method is employed, which possesses good expandability and has signif-icant implications for further vibroacoustic investigations. The simply supported boundary condition is accounted for by using the method of modal function, and double Fourier series solutions are obtained to characterize the vibroacoustic behav-iors of the structure. Results for sound transmission loss (STL), panel vibration level, and sound pressure level are presented to explore the physical mechanisms of sound energy penetration across the .nite double-panel partition. Speci.cally, focus is placed upon the in.uence of several key system parameters on sound transmission, including the thickness of air cavity, structural dimensions, and the elevation angle and azimuth angle of the incidence sound. Further extensions of the sound velocity potential method to typical framed double-panel structures are also proposed.
    In the second part, the air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an in.nite acoustic rigid baf.e is inves-tigated both analytically and experimentally, and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to in.nite where no boundaries exist. The signi.cant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel de.ection mode shapes.
    In the third part, an analytical model for sound transmission through a clamped triple-panel partition of .nite extent and separated by two impervious air cavities is formulated. The solution derived from the model takes the form of that for a clamp-supported rectangular plate. A set of modal functions (or more strictly speaking, the basic functions) are employed to account for the clamped boundary conditions, and the application of the virtual work principle leads to a set of simultaneous algebraic equations for determining the unknown modal coef.cients. The sound transmission loss (STL) of the triple-panel partition as a function of excitation frequency is calculated and compared with that of a double-panel partition. The model predictions are then used to explore the physical mechanisms associated with the various dips on the STL versus frequency curve, including the equivalent “mass-spring” resonance, the standing-wave resonance, and the panel modal resonance. The asymptotic variation of the solution from a .nite-sized partition to an in.nitely large partition is illustrated in such a way as to demonstrate the in.uence of the boundary conditions on the soundproo.ng capability of the partition. In general, a triple-panel partition outperforms a double-panel partition in insulating the incident sound, and the relatively large number of system parameters pertinent to the triple-panel partition in comparison with that of the double-panel partition offers more design space for the former to tailor its noise reduction performance.
    1.1 Simply Supported Finite Double-Panel Partitions
    1.1.1 Introduction
    Double-leaf partition structures have found increasingly wide applications in noise control engineering due to their superior sound insulation capability over single-leaf con.gurations. Typical examples include transportation vehicles, grazing windows and partition walls in buildings, aircraft fuselage shells, and so on [1–12].
    Considerable efforts have been devoted to understanding and predicting the transmission of sound across single-leaf [13–15] and double-leaf [16–29] partitions. In fact, research about the former is often a prerequisite for studying the latter. For instance, Lomas [14] developed Green function solution for the steady-state vibration of an elastically supported rectangular plate coupled to a semi-in.nite acoustic medium. An important feature of the investigation is the treatment of the elastic support boundary condition which was taken into account by assuming the rotational motion along the boundary control


     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部