[ 收藏 ] [ 简体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  • 新类目

     管理
     投资理财
     经济
     社会科学
  • 人體呼吸健康研究:N95過濾式面罩呼吸器的佩戴性能
    該商品所屬分類:圖書 -> 電子工業出版社
    【市場價】
    1049-1520
    【優惠價】
    656-950
    【作者】 申勝男 
    【所屬類別】 電子工業出版社 
    【出版社】電子工業出版社 
    【ISBN】9787121396274
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    出版社:電子工業出版社
    ISBN:9787121396274
    版次:1

    商品編碼:13057930
    品牌:電子工業出版社
    包裝:平裝

    開本:16開
    出版時間:2020-12-01
    用紙:膠版紙

    頁數:268
    字數:375000
    正文語種:英文

    作者:申勝男

        
        
    "

    內容簡介

    本書針對人類呼吸安全問題,運用商業軟件及自主開發程序,從提高呼吸的舒適性和佩戴的舒適性兩個角度全面而詳細的研究了纖維對空氣顆粒物的過濾性能、口罩內流場分布和口罩與人臉的接觸特性,並提出了新型風扇口罩的設計和面部密封設計的新技術。本書全部內容具有原創性和前瞻性,部分研究成果發表在公共環境衛生行業的頂級期刊。本書的所有研究內容、方法和結果的科學性及可信度均得到同行專家認可,本書的研究將為控制和降低霧霾對中國民眾呼吸健康造成的威脅提供可靠、有效的理論依據和指導。

    作者簡介

    申勝男,武漢大學動力與機械學院副教授,碩士生導師,分別於2001年和2007年獲得哈爾濱工業大學的學士和碩士學位,2012年畢業於新加坡南陽理工大學,獲機械工程專業博士學位。已發表國際SCI期刊論文50餘篇,國際會議學術報告40餘篇,授權發明專利9項,軟件著作權3項。作者長期從事跨尺度多物理場耦合分析、生物流體力學的研究,以核心成員身份參加新加坡科技研究局基金項目2項,近年又主持國家科學自然基金青年項目1項,主持湖北省自然科學基金青年項目1項,主持武漢大學自主科研(青年教師)資助項目1項,主持武漢大學引進人纔(優秀青年學術骨干)項目1項,項目金額共計570多萬。2014年獲批武漢大學"351人纔計劃”珞珈青年學者,2015年獲批湖北省楚天學者。同時作者也積極開展國內外的學術交流與合作,也取得了豐碩的成果。直至今日,已和國內多所大學和研究機構建立了學術交流與合作關繫,與新加坡南洋理工大學,德克薩斯理工大學保持著密切的聯繫,建立了實質性的科研合作關繫,極大推動了學院學術交流的發展。

    目錄

    Chapter 1 Introduction 001
    1.1 Background 002
    1.2 Motivation 004
    1.3 Outline 007
    Chapter 2 Study of the filtration performance of multi-fiber filters 009
    2.1 Introduction 011
    2.2 Model of multi-fiber filters 014
    2.2.1 Geometric model and simulation method of multi-fiber filters 014
    2.2.2 Model validation 016
    2.3 Filtration efficiency and its optimization 020
    2.3.1 Comparison of filtration performance between parallel and
    staggered designs 020
    2.3.2 Filtration efficiency at different face velocities and particle
    diameters 022
    2.3.3 Filtration performance of layered filters with the same total SVF 024
    2.3.4 Optimization of pressure drop and filtration efficiency 025
    2.4 Conclusion 028
    References 030
    Chapter 3 Study of particle rebound and deposition on fiber surface 034
    3.1 Introduction 036
    3.2 Models of flow field and particle movement 041
    3.2.1 Flow field and particle movement 041
    3.2.2 Particle rebound model 044
    ?
    3.3 Particle transport and deposition 048
    3.3.1 Effect of particle rebounds on particle deposition 048
    3.3.2 Effects of face velocity on particle deposition 050
    3.3.3 Effects of particle diameter on particle deposition 052
    3.3.4 Filtration efficiency of a single fiber 054
    3.4 Conclusion 057
    References 059
    Chapter 4 Investigation of the flow-field in the upper respiratory system
    when wearing N95 FFR 064
    4.1 Introduction 066
    4.2 Modeling of full breathing cycles 068
    4.2.1 Flow field reverse modeling 068
    4.2.2 CFD simulation of a full breathing cycle 071
    4.3 Flow field of a full breathing cycle 074
    4.3.1 Flow characteristics of a full breathing cycle 074
    4.3.2 CO2 volume fraction 075
    4.3.3 Temperature distribution inside FFR cavity 077
    4.3.4 Pressure and wall shear stress inside upper respiratory airway 079
    4.4 Discussion 082
    4.5 Conclusion 085
    References 086
    Chapter 5 Investigation of water vapor condensation on the inner surface
    of N95 FFR 089
    5.1 Introduction 091
    5.2 CFD modeling of water vapor condensation 093
    5.2.1 Model of water vapor condensation 093
    5.2.2 CFD-setup and boundary conditions of water vapor condensation 093
    5.3 Water vapor condensation on the inner surface of N95 FFR 097
    5.3.1 Effects of different environmental temperatures 099
    5.3.2 Effects of different breathing velocities 102
    5.3.3 Effects of different breathing frequencies 104
    5.4 Discussion 108
    5.5 Conclusion 110
    References 111
    Chapter 6 Effect of vapor condensation on micro-climate in the deadspace
    of N95 FFR 113
    6.1 Introduction 115
    6.2 CFD modeling of vapor condensation 117
    6.2.1 Model of vapor condensation 117
    6.2.2 CFD-setup and boundary conditions of vapor condensation 118
    6.2.3 FFR performance and vapor condensation distribution 120
    6.3 Experiment of micro-climate inside N95 FFR 126
    6.3.1 Experiment of temperature and relative humidity measuring
    inside FFR 127
    6.3.2 Experiment of bacteria accounting on the inner surface of FFR 129
    6.4 Conclusion 133
    References 134
    Chapter 7 Investigation of movement characteristics and respiratory
    deposition of indoor cigarette particles 136
    7.1 Introduction 138
    7.2 Model of particle movement and respiratory deposition 141
    7.2.1 Description of room, human and particles system 141
    7.2.2 CFD model of cigarette particles deposition 143
    7.2.3 PM2.5 measurement 146
    7.3 Flow field and cigarette particles deposition 147
    7.4 Conclusion 155
    References 156
    Chapter 8 An improved FFR design with a ventilation fan: CFD simulation
    and validation 159
    8.1 Introduction 161
    8.2 Improved FFR design and CFD simulation 163
    8.2.1 Improved FFR design 163
    8.2.2 Simulation method of flow field in FFR 164
    8.3 Performance of the ventilation fan and its effects 169
    8.3.1 Flow characteristics of the ventilation fan 169
    8.3.2 Effects of fan orientation 170
    8.3.3 Experiment on temperature of headform and FFR 172
    8.4 Conclusion 177
    References 178
    Chapter 9 Design of the FFR with an intelligent control fan 181
    9.1 Introduction 183
    9.2 Improved FFR design 184
    9.3 Design of intelligent control system 186
    9.4 Test results of FFR performance 189
    9.5 Discussion 193
    9.6 Conclusion 194
    References 195
    Chapter 10 Study of contact characteristics between a respirator
    and a headform 196
    10.1 Introduction 198
    10.2 Models and methods of contact characteristics between a
    respirator and a headform 202
    10.2.1 Geometric models of headform and respirator 202
    10.2.2 Simulation methods of contact characteristics 205
    10.3 Contact characteristics between a respirator and a headform 208
    10.4 Conclusion 214
    References 216
    Chapter 11 The effects of facial expressions on respirators fit 218
    11.1 Introduction 220
    11.2 Models and methods of facial expressions 223
    11.2.1 FE models of the headfrom and respirator 223
    11.2.2 Simulation methods of facial expressions 225
    11.3 Effects of facial expressions on respirators fit 227
    11.4 Conclusion 234
    References 236
    Chapter 12 Customized design and 3D printing of face seal for an N95 FFR 238
    12.1 Introduction 240
    12.2 Design, manufacture and test of customized face seals 242
    12.2.1 3D laser scanning of human headform 243
    12.2.2 Customized design of FFR face seal 243
    12.2.3 3D printing of the FFR face seal 245
    12.2.4 Experiment setup and procedures 245
    12.3 Contact characteristics between the FFR and headform 249
    12.4 Discussion 253
    12.5 Conclusion 255
    References 256

    查看全部↓

    前言/序言

    With the growth of industrialization, air pollution has become an increasingly serious concern in China. Air pollution has deleterious effects on public health. In China, particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5), which is small enough to gain entry into the thoracic region of the respiratory system resulting in respiratory and cardiovascular diseases, has become the fourth most common health concern. It is reported that 350,000 to 500,000 people die prematurely each year as a result of outdoor air pollution in China. A common solution to prevent inhalation of air pollutants, especially PM2.5, is to wear a respirator in daily life. This book first studies the mechanism of particles adsorption and rebound by respirator fibers, then it studies the flow-field of N95 filtering facepiece respirator (FFR), and proposes a method to improve the flow-field distribution and improve respiratory comfort. Finally, it investigates the contact characteristics between a respirator and a headform, and proposes a novel technology to improve the wearing comfort and fit of FFR wearers.

    Chapter 1 of this book is the Introduction. Chapter 2 and Chapter 3 study the filtration performance of multi-fiber filters, the mechanism of particles adsorption by respirator fibers, and particle rebound by the cross-scale analysis. Chapter 2 investigates the pressure drops and filtration efficiency with different fiber arrangements, fiber diameters, face velocities and particle sizes. The layered structures with the same fiber diameters and total solid volume fraction (SVF) are compared. Then, methods to optimize the dense-sparse structure so as to achieve a better filtration performance by using less tiny fibers in the front-row and removing some fibers in the back-row are discussed. In Chapter 3, the interaction between the particle and fiber surface is studied using a self-developed Fortran code and an adherence criterion to determine whether a particle will rebound from or adhere to a solid surface is proposed. The effects of particle rebound characteristics on the morphology of particle depositions are also analyzed.

    Chapters 4 to 7 study the flow-field in the upper respiratory system when the N95 FFR is worn. In Chapter 4, a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, pressure and wall shear stress distribution in the respiratory system is conducted for an individual wearing an FFR. In Chapter 5, the distribution characteristics of water vapor condensation on the inner surface of a FFR are studied under different breathing conditions, including different environmental temperatures and breathing patterns. In Chapter 6, micro-climate features in the deadspace of an N95 FFR considering water vapor condensation are studied. It simulates the temperature and water vapor distribution in the deadspace of N95 FFR using the computational fluid dynamics method. Then, it experimentally measures the temperature, relative humidity and bacteria distribution inside N95 FFR. Chapter 7 quantitatively investigates the flow characteristics and respiratory deposition of particles. A computational fluid dynamic method is used to assess the velocity, concentration and inhalation levels of indoor particles using a mankind realistic upper respiratory tract. An experiment is also performed to measure the PM2.5 concentrations.

    Chapter 8 and Chapter 9 examine optimization of the respiratory design to improve the flow-field and increase the comfort of wearers. In Chapter 8, an improved FFR designed to increase the comfort of wearers during low-moderate work is presented. The newly developed respirator helps lower the deadspace temperature and CO2 level by an active ventilation fan. Chapter 9 focuses on the development of an FFR with an intelligent control fan which has better comfort and permeability. A fan with intelligent control can reduce the temperature and humidity and CO2 concentration.

    Chapter 10 and Chapter 11 investigate the contact characteristics between a respirator and a headform. Chapte


    查看全部↓



    "
     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部