[ 收藏 ] [ 简体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

     经部  史类  子部  集部  古籍管理  古籍工具书  四库全书  古籍善本影音本  中国藏书
  •  文化

     文化评述  文化随笔  文化理论  传统文化  世界各国文化  文化史  地域文化  神秘文化  文化研究  民俗文化  文化产业  民族文化  书的起源/书店  非物质文化遗产  文化事业  文化交流  比较文化学
  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

     执业资格考试用书  室内设计/装潢装修  标准/规范  建筑科学  建筑外观设计  建筑施工与监理  城乡规划/市政工程  园林景观/环境艺术  工程经济与管理  建筑史与建筑文化  建筑教材/教辅  英文原版书-建筑
  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

     园艺  植物保护  畜牧/狩猎/蚕/蜂  林业  动物医学  农作物  农学(农艺学)  水产/渔业  农业工程  农业基础科学  农林音像
  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

  •  保健/养生

  •  体育/运动

  •  手工/DIY

  •  休闲/爱好

  •  英文原版书

  •  港台图书

  •  研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学

  •  音乐
     音乐理论

     声乐  通俗音乐  音乐欣赏  钢琴  二胡  小提琴
  • 納孔材料進展
    該商品所屬分類:工業技術 -> 一般工業技術
    【市場價】
    489-710
    【優惠價】
    306-444
    【作者】 (德)恩斯特 
    【所屬類別】 圖書  工業技術  一般工業技術 
    【出版社】科學出版社 
    【ISBN】9787030305701
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:精裝

    是否套裝:否
    國際標準書號ISBN:9787030305701
    作者:(德)恩斯特

    出版社:科學出版社
    出版時間:2011年04月 

        
        
    "

    內容簡介


    本書介紹了納米多孔材料的*研究進展。首先介紹了分子篩膜制備、分離及工業應用。其次介紹了分子篩催化劑在芳烴化反應中的應用進展情況。接下來全面介紹了新型的微孔與介孔材料,例如,多孔非硅質金屬氧化物材料、多孔合金材料、金屬氧化物納米復合物、多孔聚合物材料、微孔磷酸鋁催化劑等內容。本書內容全面,附有大量圖表來闡述相關內容,同時附有大量參考文獻以供讀者參考。本書適合化學化工、材料等專業的研究人員閱讀使用。

    目錄
    編者
    前言
    第1章 沸石分子篩膜——現狀和前景 Juergen Caro和Manfred Noack
    1.簡介:建立概念
    2.沸石分子篩膜的制備
    3.沸石分子篩膜的分離特性
    4.沸石分子篩膜的工業應用
    5.新的合成概念
    6.未來展望
    致謝
    參考文獻
    第2章 沸石分子篩催化劑在芳構化過程中的進展 C. Perego和P. Pollesel
    1.簡介
    2.沸石分子篩催化劑用於烴類芳構化反應

    編者

    前言

    第1章 沸石分子篩膜——現狀和前景 Juergen Caro和Manfred Noack

        1.簡介:建立概念

        2.沸石分子篩膜的制備

        3.沸石分子篩膜的分離特性

        4.沸石分子篩膜的工業應用

        5.新的合成概念

        6.未來展望

        致謝

        參考文獻

    第2章 沸石分子篩催化劑在芳構化過程中的進展 C. Perego和P. Pollesel

        1.簡介

        2.沸石分子篩催化劑用於烴類芳構化反應

        3.二甲苯

        4.烷基化反應生產烷基苯

        5.結論

        參考文獻

    第3章 介孔非硅材料及其功能 Ajayan Vinu

        1.簡介

        2.介孔非硅金屬氧化物的制備

        3.介孔金屬

        4.介孔合金和金屬金屬氧化物納米復合材料

        5.介孔半導體

        6.介孔聚合物

        7.介孔碳

        8.介孔氮化碳

        9.介孔氮化硼和介孔硼碳氮

        10.總結與未來展望

        致謝

        術語表

        參考文獻

    第4章 含過渡金屬微孔磷酸鋁和微孔磷酸硅鋁的催化作用 Martin Hartmann和S. P. Elangovan

        1.簡介

        2.固體酸催化作用

        3.雙功能催化作用

        4.氧化還原催化作用

        5.其他的催化應用

        6.結論和展望

        致謝

        參考文獻

    主題詞索引


     

    在線試讀
    CHAPTER1
    Zeolite Membranes-Status
    and Prospective
    Juergen Caro1,and Manfred Noack2
    1Leibniz University of Hannover,Institute of Physical Chemistry andElectrochemistry,
    Callinstr.3-3A,D-30167 Hannover,Germany
    2Leibniz Institute for Catalysis at the University Rostock,BerlinBranch (former ACA),
    Richard-Willsta¨tter-Str.12,D-12489 Berlin,Germany
    Contents
    1.Introduction: Setting the Scene 2
    2.Preparation of Zeolite Membranes 5
    2.1.Peculiarities of zeolite membrane crystallization 5
    2.2.Direct in situ crystallization on supports 8
    2.3.Secondary crystallization using seeded supports 9
    2.4.Use of silica nanoblocks as precursor 13
    3.Separation Behavior of Molecular Sieve Membranes 14
    3.1.Apparatus and definitions 14
    3.2.Characterization of zeolite membranes by permporosimetry18
    3.3.Permeation of single components 22

    CHAPTER1

    Zeolite Membranes-Status

    and Prospective

    Juergen Caro1,and Manfred Noack2

    1Leibniz University of Hannover,Institute of Physical Chemistry and
    Electrochemistry,

    Callinstr.3-3A,D-30167 Hannover,Germany

    2Leibniz Institute for Catalysis at the University Rostock,Berlin
    Branch (former ACA),

    Richard-Willsta¨tter-Str.12,D-12489 Berlin,Germany

    Contents

    1.Introduction: Setting the Scene 2

    2.Preparation of Zeolite Membranes 5

    2.1.Peculiarities of zeolite membrane crystallization 5

    2.2.Direct in situ crystallization on supports 8

    2.3.Secondary crystallization using seeded supports 9

    2.4.Use of silica nanoblocks as precursor 13

    3.Separation Behavior of Molecular Sieve Membranes 14

    3.1.Apparatus and definitions 14

    3.2.Characterization of zeolite membranes by permporosimetry
    18

    3.3.Permeation of single components 22

    3.4.Separation of binary mixtures 29

    3.5.Case study: Hydrogen separation 33

    3.6.Case study: Carbon dioxide separation 37

    3.7.Membrane reactors on the laboratory scale 44

    3.8.Micromembrane reactor 46

    4.Industrial Applications of Zeolite Membranes 49

    4.1.De-watering of ethanol and propanol by hydrophilic
    zeolite

    membranes 49

    4.2.Ethanol removal from fermentation batches by hydrophobic
    zeolite

    membranes 54

    4.3.Further R&D on zeolite membrane-based separation processes
    57

    4.4.Cost analysis: Need for cheaper supports 58

    5.Novel Synthesis Concepts 62

    5.1.Crystallization by microwave heating 62

    5.2.Use of intergrowth supporting substances 65

    5.3.Growth of oriented zeolite layers on supports 69

    5.4.Bi-layer membranes 73

    5.5.Metal organic frameworks as molecular sieve membranes 75

    5.6.Functional zeolite films 79

    5.7.Mixed matrix membranes 81

    6.Outlook 82

    Acknowledgment 84

    References 84

    Abstract

    The introduction of industrial membrane-based separation
    technologies can

    dramatically reduce the separation costs in comparison with
    thermally based

    separation technologies.In addition,membrane technologies allow the
    energy

    effective use and recovery of both valuable raw materials and the
    separation of

    wastes.Organic polymer membranes are increasingly used,but they
    suffer from

    stability at elevated temperatures and toward attack of organic
    solvents.

    Therefore,much effort is put into the development of temperature
    stable and

    solvent resistant inorganic membranes.Pd-based metal membranes
    for

    hydrogen separation,perovskite-type membranes for oxygen separation
    and

    zeolite-type molecular sieve membranes are on the jump into the
    industrial

    practice.This increasing application of inorganic membranes in gas
    separation-

    and on a later timescale in chemical membrane reactors-is a slow
    process.

    Because of the high investment costs,many companies prefer to play
    the role

    of an“observer.”In this contribution,we reflect the state of the
    art of zeolite

    membranes.We report the first industrial application of zeolite
    membranes in

    bio-ethanol de-watering and parallel ongoing fundamental research
    on

    improving the thin zeolite layer crystallization on porous
    asymmetric supports

    following new synthesis concepts and the development of novel
    diagnostics.In

    this chapter,we also treat the molecular understanding of zeolite
    membrane

    separations since this knowledge is crucial for the proper use of
    zeolite

    membranes and for the exploration of new application fields.

    1.INTRODUCTION: SETTING THE SCENE

    Intelligent membrane engineering can help to realize the
    process

    intensification strategy.Integrated membrane separations and
    new

    membrane operations such as catalytic membrane reactors and
    membrane

    contactors will play a crucial role in future
    technologies.However,so far no

    inorganic membrane is used in large-scale industrial gas
    separation.The

    increase of the 235U isotope concentration in a 238U/235U mixture
    from

    0.7% in natural uranium to approximately 3.5% for nuclear fuel
    applications

    by separation of 235UF6 and 238UF6 on porous ceramic
    membranes

    according to the Knudsen mechanism1 with an ideal separation factor
    of

    1.0043 is an exception.However,nowadays exclusively gas centrifuges
    are

    used for uranium isotope separation.Membrane reactor technology has
    a

    huge potential in the development of processes that are more
    compact,less

    capital intensive,giving higher conversions and selectivities in
    both

    thermodynamically and kinetically controlled
    reactions,respectively.

    Membrane reactors are expected to save energy and costs of
    feed/product

    separation [1].So far,no high-temperature membrane reactor for
    chemical

    reactions is in industrial operation.The use of porous ceramic
    filter

    membranes in biotechnology is an exception.

    Inorganic membranes such as ceramics,metals,and glass show
    promising

    properties different from the organic ones.They can be
    backwashed

    frequently without damaging the separation layer.Inorganic
    membranes are

    highly resistant to cleaning chemicals,they can be sterilized and
    autoclaved

    repeatedly at 130–180 1C and can withstand temperatures up to at
    least

    500 1C.These properties recommend them for biotechnological
    processes

    as well.Inorganic membranes should have longer life spans than
    organic

    ones.The life span of a typical hydrophilic organic membrane
    is

    approximately 1 year,of a hydrophobic membrane 2 years,and of

    fluoropolymers up to 4 years [2].Inorganic membranes
    are,however,much

    more expensive than polymeric ones,and they are brittle.

    Three types of inorganic membranes are near to a
    commercialization:

    Pd-based membranes in H2 separation,perovskites in O2
    separation,and

    zeolite membranes in shape-selective separations.The regular pore
    structure

    of a zeolite molecular sieve suggests that a thin supported zeolite
    membrane

    layer can discriminate between molecules of different size and
    shape.The

    pore diameter of the separating zeolite layer is in the range of
    the kinetic

    diameter of the molecules to be separated to force molecular
    sieving as the

    determining diffusional regime.Furthermore,beside the
    molecular

    exclusion effect,due to the interplay of mixture adsorption and
    mixture

    diffusion,reasonable separation effects on zeolite membranes can
    be

    expected according to specific adsorptive interactions and/or
    differences in

    the molecular mobilities.The rapidly growing progress in the field
    of

    zeolite membranes is reflected by some recent reviews [3–10].It
    is,

    therefore,not the aim of this contribution to give a comprehensive
    picture

    of zeolite membranes and to present all the fundamentals in
    detail,but to

    highlight and evaluate recent developments.

    By the end of the 1980s,the idea was born to develop zeolite
    membranes

    and the first attempts to prepare them were reported,the first
    patents were

    claimed.With some pioneering papers,R.M.Barrer triggered the

    experimental work on zeolite membranes [11,12].In parallel,he
    contributed

    Zeolite Membranes-Status and Prospective

    to the theoretical understanding of mixture permeation through
    porous

    membranes [13,14].The first one and the last one of Barrers
    altogether 407

    publications were dealing with membranes [15,16].The unit Barrer of
    gas

    permeability (flux in moles per time and area through a membrane of
    a given

    thickness and pressure difference) honours R.M.Barrer (Section
    3.1).

    Today,LTA (Linde Type A) membranes in the de-watering of alcohol
    by

    steam permeation or pervaporation have reached the commercial
    state.For

    shape-selective separations,other zeolite membranes with structure
    types

    such as MFI and DDR (deca-dodecasil 3R) are already in the
    technicum

    scale [8,17,18].Further molecular sieve structures are tested as
    membranes

    (Table 1).Most progress in the development of molecular sieve
    membranes

    was achieved for MFI-type membranes (silicalite-1 and ZSM-5) since
    their

    preparation is relatively easy.They can be synthesized highly
    siliceous,which

    provides chemical stability and allows for oxidative regeneration
    [7].

    Therefore,this contribution will mainly deal with MFI-type
    membranes.

    Table 1 Claimed structures and common modifications of zeolite
    membranes [20]

    New ways of synthesis,improved permeation tests,and proper
    applications

    shall improve the zeolite membranes for their technical
    use.Increasing R&D

    activities are reflected by increasing publication activities
    (Fig.1).It is the aim

    of this contribution to summarize the state of R&D on zeolite
    membranes as

    a relative young branch of the inorganic membrane family,250 years
    after the

    discovery of zeolites by Cronsted [19].It will be shown that the
    application

    of a crystalline molecular sieve as a zeolite membrane layer offers
    huge

    promises but it is still a challenge in itself.

    2.PREPARATION OF ZEOLITE MEMBRANES

    2.1 Peculiarities of zeolite membrane crystallization

    As it will be described in more detail in Section 3.1,for high
    fluxes and a

    proper handling of zeolite membranes,a thin zeolite layer with a
    thickness

    of 1–20 mm is crystallized on a mechanically stable
    support.However,the

    chemical compositions of the crystallization solutions and their
    handling for

    zeolite membrane preparation as a thin supported layer differ from
    the

    standard recipes for a zeolite powder crystallization
    [21–23].

    The following points are characteristic of the zeolite layer
    crystallization

    on supports [7]:

    At sufficient supersaturation,heterogeneous nucleation takes place
    on

    both the geometric outer surface of the support and inside the
    pores of

    the support.If externally prepared seed crystals are attached to
    the surface

    of the support,primarily the crystal growth of the seeds takes
    place but

    the simultaneous secondary nucleation at the surface of the
    seed

    crystallites and in/on the support cannot be suppressed
    completely.

    Therefore,diluted crystallization solutions are used to prevent
    the

    formation of new seeds and to have only growth of the attached
    seeds to

    a continuous layer.

    In the beginning of the growth of the seeds,the surface-to-volume
    ratio

    increases like in the case of the crystallization in the free
    solution.This is

    based on the effect that in the beginning of crystal growth,usually
    a

    parallel nucleation takes place,which results in a surface
    enlargement.In

    the subsequent process of crystal intergrowth,the individual
    crystals

    grow together to a continuous layer and the surface-to-volume
    ratio

    decreases drastically.

    The diffusion of the precursor species in the solution is not rate
    limiting.

    Since crystal growth is controlled by a first-order surface
    process,the

    growth rate decreases with the reduction of accessible
    surface.

    For the crystal intergrowth that is important for the sealing of
    voids

    between crystals,the viscosity of the synthesis solution should be
    low to

    enable mass transport in narrow slits.The driving force of the
    diffusion

    process is the concentration gradient.Therefore,the low viscosity
    should

    be realized rather by higher temperatures than by dilution.Another
    way

    to decrease the viscosity consists in an increase of the pH,which
    results in

    a higher concentration of low-connected silica species.

    During the crystal intergrowth of isolated crystals to a continuous
    layer,a

    large slit surface is in contact with a small volume of synthesis
    solution.

    Therefore,besides crystal growth,a strong heterogeneous
    secondary

    nucleation inside the slit can occur,which can lead to a closure of
    the

    macroscopic slit pore by many small crystals with
    intercrystalline

    transport pores between them.A post-synthesis thermal or
    hydrothermal

    treatment can result in a reorganization of these domains with
    improved

    membrane properties.

    The starting chemicals for the preparation of the synthesis batch
    should

    be selected with the aim to have low salt concentrations in the
    solution.

    Whereas these salts are not disturbing in the formation of the
    free

    crystals,the incorporation of neutral salt species-especially in
    multicrystal

    layer formation-can be disturbing since defect pores are
    formed

    by their thermal decomposition (e.g.,NH4NO3 and carbonate

    decomposition).

    It was found in a large number of studies that it is de facto
    impossible to

    crystallize defect-free Al-containing zeolite layers.Because of the
    strong

    negative surface charge (zeta potential) of Al-containing
    zeolites,the

    intergrowth of the crystals in the membrane layer is poor,and the
    grain

    boundaries represent defect pores in the mesopore region.This
    holds

    true for both the in situ-growth and the secondary growth with
    seeds.By

    using Intergrowth Supporting Substances (ISS),the crystal
    intergrowth

    in the zeolite membrane layer can be improved (Section 5.2).



     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部