[ 收藏 ] [ 简体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

  •  文化

  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

     保健/养生
     体育/运动
     手工/DIY
     休闲/爱好
     英文原版书
     港台图书
     研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学
  • 氣相爆破技術與生物煉制=Gas Explosion Technology and Biomass
    該商品所屬分類:工業技術 -> 化學工業
    【市場價】
    1633-2368
    【優惠價】
    1021-1480
    【作者】 陳洪章 
    【所屬類別】 圖書  工業技術  化學工業  爆炸物工業/火柴工業 
    【出版社】化學工業出版社 
    【ISBN】9787122257574
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    包裝:平裝
    國際標準書號ISBN:9787122257574

    作者:陳洪章
    出版社:化學工業出版社
    出版時間:2016年01月 


        
        
    "

    編輯推薦
    原創性較強,內容繫統全面。 
    內容簡介
    氣相爆破技術用於預處理生物質原料,近年來得到了國內外研究者的廣泛重視。筆者基於秸稈與木材在化學組成和結構上的差異,提出對秸稈不加任何化學藥品的無污染低壓蒸汽爆破新技術,並推廣到煙草加工、中草藥提取、麻纖維清潔脫膠等行業領域。

    本書繫統分析了氣相爆破技術原理及固體多組分物料蒸汽爆破組分分離機制,並對氣相爆破的工藝設備進行了介紹,重點對其生物質煉制應用工藝進行了闡述。
    作者簡介
    陳洪章,中國科學院過程工程研究所,研究員,現任生化工程國家重點實驗室副主任、生物質項目首席研究員。主要致力於生態生化工程研究,以新型固態發酵和原料組分分離為核心,充分吸收分子生物學和工業生態學的新思路,研究生態生化工程的學科基礎和關鍵技術平臺問題。
    目錄
    1 Gas Explosion Technique Principles and Biomass
    Refining Pandect 1
    1.1 Gas Explosion Technical Overview 1
    1.1.1 History of Gas Explosion Technique1
    1.1.2 Technical Classification of Gas Explosion 3
    1.1.3 Latest Developments of Gas Explosion Technique 5
    1.2 Biomass Refinery and Gas Explosion Technology 12
    1.2.1 Biomass Concept and Biomass Refining 12
    1.2.2 Lignocellulosic Biomass Recalcitrance to Degradation 13
    1.2.3 Effective Methods to Expose Cellulose in Cell Wall by Physicochemical Pretreatments 14
    1.2.4 Advantages of Steam Explosion-Derived Biomass Refining15
    1.3 Foreground and Prospect17
    1.3.1 Preface 17
    1.3.2 Cognition of Biomass Supermolecule Structure and Necessity of Selective Structural Deconstruction171 Gas Explosion Technique Principles and Biomass

    Refining Pandect 1

    1.1 Gas Explosion Technical Overview 1

    1.1.1 History of Gas Explosion Technique1

    1.1.2 Technical Classification of Gas Explosion 3

    1.1.3 Latest Developments of Gas Explosion Technique 5

    1.2 Biomass Refinery and Gas Explosion Technology 12

    1.2.1 Biomass Concept and Biomass Refining 12

    1.2.2 Lignocellulosic Biomass Recalcitrance to Degradation 13

    1.2.3 Effective Methods to Expose Cellulose in Cell Wall by Physicochemical Pretreatments 14

    1.2.4 Advantages of Steam Explosion-Derived Biomass Refining15

    1.3 Foreground and Prospect17

    1.3.1 Preface 17

    1.3.2 Cognition of Biomass Supermolecule Structure and Necessity of Selective Structural Deconstruction17

    1.3.3 Analysis of Biomass Recalcitrance and Breaking Pathways19

    1.3.4 Changes of Biomass Mechanical Properties During Refining Process 19

    1.3.5 Thermodynamics and Dynamics During Biomass Refining Processes 20

    1.3.6 Basis of Biomass Engineering Science 21

    References 23

    2 Principle of Gas Explosion Technology 27

    2.1 The Main Parameters Affecting the Gas Explosion Process 28

    2.1.1 Overview 28

    2.1.2 Effect of Material Parameters on Gas Explosion29

    2.1.3 Effect of Operating Parameters on Gas Explosion38

    2.1.4 Effect of Equipment Parameters on the Gas Explosion 40

    2.1.5 Relationship Between Product Parameters and Gas Explosion 41

    2.2 Multi-scale Modeling of Biomass Pretreatment for Steam Explosion Condition Optimization 42

    2.2.1 Overview 42

    2.2.2 Multi-scale Model Eduction in the Instantaneous Decompression Stage of Steam Explosion 44

    2.2.3 Multi-scale Model Connotation 49

    2.2.4 Establishing a Novel Severity Factor on the Basis of Chip Size, Discharge Port Area,and Moisture Content 53

    2.3 Mechanisms of the Physical and Chemical Coupling Effects of Gas Explosion 54

    2.3.1 Overview 54

    2.3.2 Effects of SE on Degradation of Hemicellulose and Lignin 55

    2.3.3 Effects of SE on Pore Distribution of Straw 57

    2.3.4 Effects of SE on Permeability of Straw 59

    2.3.5 Effects of SE on EHY of Straw 59

    2.4 Dissolution Thermodynamics of the Degradation Products of Steam-Exploded Straw 61

    2.4.1 Overview 61

    2.4.2 Effects of Temperature on the Dissolution Rate of Degradation Products 62

    2.4.3 Effects of LSR on the Dissolution Rate of Degradation Products 63

    2.4.4 Effects of Ionic Strength on the Dissolution Rate of Degradation Products 63

    2.4.5 Effects of pH on the Dissolution Rate of Degradation Products 64

    2.4.6 Optimal Dissolution Conditions for Sugars and Phenolic Compounds 64

    2.4.7 Dissolution Thermodynamic Principles for Degradation Products in SE 65

    2.5 Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw 67

    2.5.1 Overview 67

    2.5.2 Determination of Potential Fermentation Inhibitors in Steam Explosion Hydrolysates 67

    2.5.3 Yields of Inhibitors at Different Steam Explosion Conditions 70

    2.5.4 Dynamic Parameters and Yield Equations of Inhibitors in Steam Explosion Process72

    2.6 Analysis of Energy Consumption on Steam Explosion Process 74

    2.6.1 Overview 74

    2.6.2 The Composition of Steam Explosion Energy Consumption 75

    2.6.3 Calculation Formulas for Each Part of Energy 75

    2.6.4 Experiment Design and Data Processing 77

    2.6.5 Relationship Between the Ratio of Tank Height to Diameter, Loading Coefficient, Initial Moisture Content of Materials, Holding Temperature,and Total Energy Consumption 77

    2.6.6 Energy Analysis of Steam Explosion Process79

    References 85

    3 Gas Explosion Equipments 87

    3.1 Cutter Bar and Dedusting Equipments 87

    3.1.1 Knife-Rall Straw Cutter 87

    3.1.2 Straw Baler 97

    3.1.3 Straw Baler Loosing Machine 105

    3.1.4 Conveyor 107

    3.2 Rehydration and Dehydration Equipments 108

    3.2.1 Rehydration Equipment108

    3.2.2 Dehydration Equipment 110

    3.3 Gas Explosion Equipments 113

    3.3.1 Batch Gas Explosion Equipment 113

    3.3.2 Continuous Gas Explosion Equipments 115

    3.3.3 In Situ Gas Explosion Equipment119

    3.4 Steam Generator 121

    3.4.1 Overview of Steam Generator 121

    3.4.2 Electric Steam Generator124

    3.4.3 Fuel Steam Generator 129

    3.4.4 Coal-Fired Steam Generator131

    3.5 Receiver 131

    3.6 Parameters Detection 131

    3.6.1 System for Dynamic Data Test 132

    3.6.2 Pressure Transducers 133

    3.6.3 Temperature Transducers133

    3.6.4 Solid Flowmeter134

    3.7 Carding Device 137

    3.7.1 Hydraulic Carding Device (Paul Fractionator) 137

    3.7.2 Airflow Grading Device 138

    3.7.3 Mechanical Carding Device141

    References 142

    4 Process Development of Gas Explosion 145

    4.1 Process Development of Gas Explosion Technology145

    4.1.1 Overview of Gas Explosion Technology 145

    4.1.2 Iogen Steam Explosion Technology 146

    4.1.3 Stake Steam Explosion Technology 148

    4.1.4 Low-Pressure and Non-pollution Steam Explosion Technology 152

    4.1.5 In Situ Gas Explosion Technology 154

    4.1.6 In Situ Multistage Flashing and Steam Explosion Drying Technology 155

    4.1.7 Steam Explosion and Carding Technology155

    4.2 Process Development of Eco-industrialization of Steam-Exploded Materials 160

    4.2.1 Biomass Resource and Its Distribution 160

    4.2.2 Collection and Transportation of Biomass 162

    4.2.3 Properties of Lignocellulosic Materials 170

    4.2.4 Utilization Status and Existing Problems of Lignocellulose 175

    4.2.5 Necessity of Lignocellulose Refinery 178

    4.2.6 Refinery of Lignocellulosic Materials 179

    4.2.7 Process Integration of Steam Explosion Technologies 182

    4.2.8 Examples of Ecological Development of Multi-component Solid Materials 183

    References 194

    5 Characterization and Research Methods of Gas-Exploded Materials 197

    5.1 Structural Morphology Characterization of Gas-Exploded Materials 197

    5.1.1 Length Measurement of Fibrocytes 197

    5.1.2 Research of Fiber Roughness and Weight Factor 198

    5.1.3 Microscope Characterization 198

    5.1.4 Scanning Electron Microscopy (SEM)Characterization 200

    5.1.5 Transmission Electron Microscope (TEM)200

    5.1.6 Atomic Force Microscopy (AFM) 201

    5.1.7 Environmental Scanning Electron Microscope(ESEM) 204

    5.1.8 X-ray Diffraction (XRD) Characterization 206

    5.1.9 Molecular Weight Determination 206

    5.1.10 Degree of Polymerization Determination 206

    5.2 Determination of Components of Gas-Exploded Materials 207

    5.2.1 Determination of Cellulose Content 207

    5.2.2 Lignin Content Determination 208

    5.2.3 Hemicellulose Content Determination 208

    5.2.4 Extract Content Determination 209

    5.2.5 Non-fiber Cell Content Determination209

    5.2.6 Protein Content Determination 209

    5.2.7 Wax Content Determination 209

    5.2.8 Lipid Content Determination 210

    5.2.9 Ash Content Determination 210

    5.2.10 Moisture Content Determination210

    5.2.11 Flavonoid Content Determination 210

    5.2.12 Pectin Content Determination 210

    5.2.13 Tannin Content Determination 211

    5.3 Determination of the Active Groups in Gas-Exploded Materials 211

    5.3.1 Determination of Methoxyl Group Content 211

    5.3.2 Determination of Hydroxyl Content 211

    5.3.3 Determination of Carboxyl Content 212

    5.3.4 Simultaneous Determination of Carboxyl and Phenolic Hydroxyl 212

    5.4 Particle Properties Characterization of Gas-Exploded Materials 213

    5.4.1 Particle Size Analysis 213

    5.4.2 The Application of Fractal Dimension in the Particle Characterization214

    5.5 Interface Characterization Performance of Gas-Exploded Materials 215

    5.5.1 Determination of the Specific Surface Area 215

    5.5.2 The Characterization of Interfacial Tension 215

    5.5.3 Characterization of Contact Angle 216

    5.6 Characterization of Porous Properties of Gas-Exploded Materials 218

    5.6.1 Characterization of Pore Size Distribution 218

    5.6.2 Characterization of Permeability Coefficient 219

    5.6.3 Characterization of Other Properties of Porous Media 219

    5.7 Characterization of Biomechanical Property of Gas-Exploded Materials 219

    5.7.1 Characterization of Hydrogen Content219

    5.7.2 Tensile Strength 220

    5.7.3 Compressive Strength 220

    5.7.4 Bending Property 220

    5.7.5 Shear Strength 220

    5.7.6 Hardness and Impact Toughness 220

    5.8 Characterization of Wet and Dry Performance of Gas-Exploded Materials 221

    5.8.1 The Moisture Content and Shrinkage 221

    5.8.2 The Existing State of Water221

    5.8.3 Fiber Saturation Point 222

    5.9 Characterization of Physicochemical Properties of Gas-Exploded Materials 222

    5.9.1 Chemical Bond Energy 222

    5.9.2 Thermodynamic Energy 222

    5.9.3 Enthalpy Value 223

    5.9.4 Specific Heat Capacity 223

    5.9.5 Thermal Conductivity 223

    5.10 Rheological Characterization of Gas-Exploded Materials 224

    References 224

    6 Applications of Gas Explosion in Biomass Refining 227

    6.1 Applications of Gas Explosion in Food Industry 227

    6.1.1 Processing of Fruit and Vegetable Residue 227

    6.1.2 Meat Residue Processing229

    6.1.3 Marine Products Processing 235

    6.1.4 Food Processing239

    6.1.5 Roughage Processing 239

    6.2 Application of Gas Explosion Technology in Pharmaceutical Industry 247

    6.2.1 Problems in Processing and Extraction Process of Medicinal Plants 247

    6.2.2 Gas Explosion Enhancing Bioactive Ingredients Extraction from Traditional Chinese Medicines 250

    6.2.3 Gas Explosion Processing of Traditional Chinese Medicines 260

    6.2.4 Gas Explosion Technology Focused Ecological Industry of Medicinal Plants 270

    6.3 Application of Gas Explosion Technology in Bioenergy 279

    6.3.1 Pretreatment of Feedstock in Bioenergy 279

    6.3.2 Advantages of Gas Explosion for Bioenergy Feedstock Pretreatment 280

    6.3.3 Typical Applications of Gas Explosion in Bioenergy 281

    6.4 The Applications of Steam Explosion Technology in Biomaterial Field 286

    6.4.1 Natural Textile Fiber Extraction Using Steam Explosion Technology 287

    6.4.2 Preparation of Natural Cellulose Nanofiber by Steam Explosion 298

    6.4.3 Wood-Based Panels Made by Steam Explosion Corn Straw 300

    6.4.4 Dissolving Pulp Produced by Steam-exploded Straw302

    6.4.5 Polyurethane Foam Produced by Steam-exploded Straw Liquidation305

    6.4.6 Protein Fiber Processing 311

    6.5 Application of Steam Explosion Technology in Chemical Industry 317

    6.5.1 Oxalic Acid318

    6.5.2 Furfural320

    6.5.3 Acetylpropionic Acid 323

    6.5.4 Xylooligosaccharide/Xylose/Xylitol 326

    6.5.5 Citric Acid 328

    6.5.6 Xanthan Gum 330

    6.5.7 Phenolic Acids332

    6.5.8 Silicon Dioxide 336

    6.5.9 Chemical Production Examples Based on Steam Explosion Technology 338

    6.6 Application of Steam Explosion Technology in Environmental Protection339

    6.6.1 Damage and Management of Solid Wastes 340

    6.6.2 Organic Fertilizer Manufacturing 344

    6.6.3 Application of Steam Explosion in Papermaking Industry 346

    6.6.4 Environmental Materials Manufactured with Steam-Exploded Straw353

    References 358
    前言
    Steam explosion technology is considered as one of the most cost-effectivepretreatments of biomassSteam explosion is the process in which the solid materialespecially lignocellulosic feedstock is pretreated with saturated steam orhigh-pressure gas for a certain time, and the solid material is then instantaneouslyexplodedIn 1928, W.HMason from USA invented firstly the steam explosiontechnology, which only used 7–8 MPa saturated steam as a medium steamThissteam explosion technology was used only for the research of fiberboard preparation.Due to high pressure, this steam explosion technology is difficult to be applied.However, from the beginning of the 1980s, the steam explosion technology hasattracted more attention again.
    After decades of development, the steam explosion technology has made greatprogressMost research still uses chemicals to pretreat biomass feedstocks at homeand abroadBased on the differences in the chemical composition and structure ofstraw and wood, author proposed the low pressure and unpolluted steam explosiontechnology of straw without any chemicals additionAnd then the new low pressureand unpolluted steam explosion technology is extended to tobacco processing,herbal extracts, cleaning degumming of hemp fiber, etc.Steam explosion technology is considered as one of the most cost-effectivepretreatments of biomassSteam explosion is the process in which the solid materialespecially lignocellulosic feedstock is pretreated with saturated steam orhigh-pressure gas for a certain time, and the solid material is then instantaneouslyexplodedIn 1928, W.HMason from USA invented firstly the steam explosiontechnology, which only used 7–8 MPa saturated steam as a medium steamThissteam explosion technology was used only for the research of fiberboard preparation.Due to high pressure, this steam explosion technology is difficult to be applied.However, from the beginning of the 1980s, the steam explosion technology hasattracted more attention again.

    After decades of development, the steam explosion technology has made greatprogressMost research still uses chemicals to pretreat biomass feedstocks at homeand abroadBased on the differences in the chemical composition and structure ofstraw and wood, author proposed the low pressure and unpolluted steam explosiontechnology of straw without any chemicals additionAnd then the new low pressureand unpolluted steam explosion technology is extended to tobacco processing,herbal extracts, cleaning degumming of hemp fiber, etc.

    On the basis of steam explosion, author extended the explosion media from thetraditional steam to mix media, and developed inert medium steam explosiontechnology and mixed media steam explosion chnologySteam explosion technologyhas been used to the gradient temperature steam explosion process and other low-temperature steam explosion process of herbal treatmentA series of clean,efficient, and economical combinatorial pretreatment technologies taking steamexplosion as the core have been invented, by which a clean and efficient separationof biomass components is achievedExplosion technology is no longer limited to asingle steam explosionThe media of explosion technology have been upgraded tomulti-gas medium based on the requirements of processBecause the steam explosion media have been developed to a variety of gaseous medium, the steam explosion is named gas phase explosion in order to enrich and enhance the connotationof traditional steam explosion technologyCurrently, gas explosiontechnology is mainly applied for lignocellulosic feedstock, whose common aim wasto achieve a multi-component separation and utilization, namely biomass refining.

    In 2006, we published the first monograph about the introduction of steamexplosion technologyBased on our research of gas explosion technology andacademic exchange with domestic and foreign peer in recent decades, authors writethis book—Gas Explosion Technology and Biomass RefiningAuthors hope to throw out a minnow to catch a whale and promote the better development of gas explosion technology.

    This book analyzes the principle of gas explosion technology and the separationmechanism of solid material multi-component, and introduces gas explosionequipment and processAdditionally, the application process of biomass refining isdescribed systematicallyThis work was financially supported by the National Basic Research Program of China (973 Project), the National High Technology Research and Development Program of China (863 Program), and the Knowledge Innovation Program of the Chinese Academy of SciencesIn addition, the works of my doctors and masters were essential preconditions for publishing this bookIn

    particular, DrZhihua Liu, Master Lanzhi Qin, Master Yang Liu, DrWenjie Sui,DrGuanhua Wang, DrYuzhen Zhang, Master Meixue Shao, DrGuanhua Li,DrLitong Ma, DrJunying Zhao, and DrNing Wang participated in riting thisbookMany references of our predecessors and colleagues are citedI wish to express my sincere thanks to all of them.

    Some errors may exist in this bookI sincerely hope to receive criticism and guidance from readers in this regard.



    Beijing Hongzhang Chen

    July 2015


     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部