[ 收藏 ] [ 简体中文 ]  
臺灣貨到付款、ATM、超商、信用卡PAYPAL付款,4-7個工作日送達,999元臺幣免運費   在線留言 商品價格為新臺幣 
首頁 電影 連續劇 音樂 圖書 女裝 男裝 童裝 內衣 百貨家居 包包 女鞋 男鞋 童鞋 計算機周邊

商品搜索

 类 别:
 关键字:
    

商品分类

  •  管理

     一般管理学
     市场/营销
     会计
     金融/投资
     经管音像
     电子商务
     创业企业与企业家
     生产与运作管理
     商务沟通
     战略管理
     商业史传
     MBA
     管理信息系统
     工具书
     外文原版/影印版
     管理类职称考试
     WTO
     英文原版书-管理
  •  投资理财

     证券/股票
     投资指南
     理财技巧
     女性理财
     期货
     基金
     黄金投资
     外汇
     彩票
     保险
     购房置业
     纳税
     英文原版书-投资理财
  •  经济

     经济学理论
     经济通俗读物
     中国经济
     国际经济
     各部门经济
     经济史
     财政税收
     区域经济
     统计 审计
     贸易政策
     保险
     经济数学
     各流派经济学说
     经济法
     工具书
     通货膨胀
     财税外贸保险类考试
     英文原版书-经济
  •  社会科学

     语言文字
     社会学
     文化人类学/人口学
     新闻传播出版
     社会科学总论
     图书馆学/档案学
     经典名家作品集
     教育
     英文原版书-社会科学
  •  哲学

     哲学知识读物
     中国古代哲学
     世界哲学
     哲学与人生
     周易
     哲学理论
     伦理学
     哲学史
     美学
     中国近现代哲学
     逻辑学
     儒家
     道家
     思维科学
     马克思主义哲学
     经典作品及研究
     科学哲学
     教育哲学
     语言哲学
     比较哲学
  •  宗教

  •  心理学

  •  古籍

     经部  史类  子部  集部  古籍管理  古籍工具书  四库全书  古籍善本影音本  中国藏书
  •  文化

     文化评述  文化随笔  文化理论  传统文化  世界各国文化  文化史  地域文化  神秘文化  文化研究  民俗文化  文化产业  民族文化  书的起源/书店  非物质文化遗产  文化事业  文化交流  比较文化学
  •  历史

     历史普及读物
     中国史
     世界史
     文物考古
     史家名著
     历史地理
     史料典籍
     历史随笔
     逸闻野史
     地方史志
     史学理论
     民族史
     专业史
     英文原版书-历史
     口述史
  •  传记

  •  文学

  •  艺术

     摄影
     绘画
     小人书/连环画
     书法/篆刻
     艺术设计
     影视/媒体艺术
     音乐
     艺术理论
     收藏/鉴赏
     建筑艺术
     工艺美术
     世界各国艺术概况
     民间艺术
     雕塑
     戏剧艺术/舞台艺术
     艺术舞蹈
     艺术类考试
     人体艺术
     英文原版书-艺术
  •  青春文学

  •  文学

     中国现当代随笔
     文集
     中国古诗词
     外国随笔
     文学理论
     纪实文学
     文学评论与鉴赏
     中国现当代诗歌
     外国诗歌
     名家作品
     民间文学
     戏剧
     中国古代随笔
     文学类考试
     英文原版书-文学
  •  法律

     小说
     世界名著
     作品集
     中国古典小说
     四大名著
     中国当代小说
     外国小说
     科幻小说
     侦探/悬疑/推理
     情感
     魔幻小说
     社会
     武侠
     惊悚/恐怖
     历史
     影视小说
     官场小说
     职场小说
     中国近现代小说
     财经
     军事
  •  童书

  •  成功/励志

  •  政治

  •  军事

  •  科普读物

  •  计算机/网络

     程序设计
     移动开发
     人工智能
     办公软件
     数据库
     操作系统/系统开发
     网络与数据通信
     CAD CAM CAE
     计算机理论
     行业软件及应用
     项目管理 IT人文
     计算机考试认证
     图形处理 图形图像多媒体
     信息安全
     硬件
     项目管理IT人文
     网络与数据通信
     软件工程
     家庭与办公室用书
  •  建筑

     执业资格考试用书  室内设计/装潢装修  标准/规范  建筑科学  建筑外观设计  建筑施工与监理  城乡规划/市政工程  园林景观/环境艺术  工程经济与管理  建筑史与建筑文化  建筑教材/教辅  英文原版书-建筑
  •  医学

     中医
     内科学
     其他临床医学
     外科学
     药学
     医技学
     妇产科学
     临床医学理论
     护理学
     基础医学
     预防医学/卫生学
     儿科学
     医学/药学考试
     医院管理
     其他医学读物
     医学工具书
  •  自然科学

     数学
     生物科学
     物理学
     天文学
     地球科学
     力学
     科技史
     化学
     总论
     自然科学类考试
     英文原版书-自然科学
  •  工业技术

     环境科学
     电子通信
     机械/仪表工业
     汽车与交通运输
     电工技术
     轻工业/手工业
     化学工业
     能源与动力工程
     航空/航天
     水利工程
     金属学与金属工艺
     一般工业技术
     原子能技术
     安全科学
     冶金工业
     矿业工程
     工具书/标准
     石油/天然气工业
     原版书
     武器工业
     英文原版书-工业技
  •  农业/林业

     园艺  植物保护  畜牧/狩猎/蚕/蜂  林业  动物医学  农作物  农学(农艺学)  水产/渔业  农业工程  农业基础科学  农林音像
  •  外语

  •  考试

  •  教材

  •  工具书

  •  中小学用书

  •  中小学教科书

  •  动漫/幽默

  •  烹饪/美食

  •  时尚/美妆

  •  旅游/地图

  •  家庭/家居

  •  亲子/家教

  •  两性关系

  •  育儿/早教

  •  保健/养生

  •  体育/运动

  •  手工/DIY

  •  休闲/爱好

  •  英文原版书

  •  港台图书

  •  研究生
     工学
     公共课
     经济管理
     理学
     农学
     文法类
     医学

  •  音乐
     音乐理论

     声乐  通俗音乐  音乐欣赏  钢琴  二胡  小提琴
  • 化學與生物視角下酸性礦山廢水中次生礦物的地球化學過程(英文版
    該商品所屬分類:工業技術 -> 環境科學
    【市場價】
    1084-1572
    【優惠價】
    678-983
    【作者】 黨志等 
    【所屬類別】 圖書  工業技術  環境科學  環境保護管理 
    【出版社】龍門書局 
    【ISBN】9787508858746
    【折扣說明】一次購物滿999元台幣免運費+贈品
    一次購物滿2000元台幣95折+免運費+贈品
    一次購物滿3000元台幣92折+免運費+贈品
    一次購物滿4000元台幣88折+免運費+贈品
    【本期贈品】①優質無紡布環保袋,做工棒!②品牌簽字筆 ③品牌手帕紙巾
    版本正版全新電子版PDF檔
    您已选择: 正版全新
    溫馨提示:如果有多種選項,請先選擇再點擊加入購物車。
    *. 電子圖書價格是0.69折,例如了得網價格是100元,電子書pdf的價格則是69元。
    *. 購買電子書不支持貨到付款,購買時選擇atm或者超商、PayPal付款。付款後1-24小時內通過郵件傳輸給您。
    *. 如果收到的電子書不滿意,可以聯絡我們退款。謝謝。
    內容介紹



    開本:16開
    紙張:膠版紙
    包裝:平裝-膠訂

    是否套裝:否
    國際標準書號ISBN:9787508858746
    叢書名:礦區生態環境修復叢書

    作者:黨志等
    出版社:龍門書局
    出版時間:2020年12月 


        
        
    "

    編輯推薦

    次生礦物,生物地球化學,研究,英文

     
    內容簡介

    This book is of interest regarding acid mine drainage (AMD), an important environmental problem caused by the natural weathering of metal sulfides during the utilization of mineral resources. In the AMD-contaminated watershed environment, a large number of metastable iron-sulfate secondary minerals are often formed, which can adsorb and co-precipitate heavy metals within AMD. At the same time, mineral transformation determines the rerelease behavior of heavy metals and their fate in different phases. This book introduces the scientific problems of biochemically controlled processes and heavy metal release mechanisms driven by various environmental factors as follows: ① migration and fate of metallic elements in the mud impoundment and the affected river; ② SO24 -migration in an AMD-affected river; ③ mineralogical characteristics of sediments in an AMD-affected river; ④ Fe- and S-metabolizing microbial communities in an AMD-affected river ecosystem; ⑤ chemical and biological transformations of secondary mineral phases in AMD-affected river sediments.This theoretical framework will help to clarify the migration pathways and internal mechanism of heavy metals in mining areas, thus providing insight into the prevention and control of heavy metal pollution in such areas.

    目錄
    Contents
    Chapter 1 Pollution of Acid Mine Drainage in The Mining Area 1
    1.1 Acid Mine Drainage and Its Occurrence 1
    1.2 Mechanism of AMD Generation 3
    1.3 AMD Prevention and Control Techniques 6
    1.3.1 Oxygen Barrier 6
    1.3.2 Bactericide 8
    1.3.3 Co-Disposal and Blending 8
    1.3.4 Passivation 9
    1.3.5 Passive Treatment Techniques 9
    1.4 Main Points of Interest in This Book 10
    1.4.1 Sulfur Cycle in AMD-Affected Watershed 10
    1.4.2 Fe Cycling and Nano-Fe(III) secondary minerals in AMD-Affected Watershed 12
    1.4.3 Main Points of Interest inOurWork 14

    Contents
    Chapter 1 Pollution of Acid Mine Drainage in The Mining Area 1
    1.1 Acid Mine Drainage and Its Occurrence 1
    1.2 Mechanism of AMD Generation 3
    1.3 AMD Prevention and Control Techniques 6
    1.3.1 Oxygen Barrier 6
    1.3.2 Bactericide 8
    1.3.3 Co-Disposal and Blending 8
    1.3.4 Passivation 9
    1.3.5 Passive Treatment Techniques 9
    1.4 Main Points of Interest in This Book 10
    1.4.1 Sulfur Cycle in AMD-Affected Watershed 10
    1.4.2 Fe Cycling and Nano-Fe(III) secondary minerals in AMD-Affected Watershed 12
    1.4.3 Main Points of Interest inOurWork 14
    1.5 The Dabaoshan Mine 15
    1.5.1 Mineral Resources of The Dabaoshan Mine 15
    1.5.2 Solid Waste Disposal in the Mine Area 16
    1.5.3 AMD Control and Its Treatment in Mine Area 18
    1.5.4 AMD Pollution in the Dabaoshan Mine Area 20
    1.5.5 General Sampling Sites Arrangement 21
    Chapter 2 Sulfate Migration and Geochemical Behaviors in the AMD-Affected River 23
    2.1 Physicochemical Characteristics of the Affected River Watershed 23
    2.1.1 Acidic Watershed Environments 24
    2.1.2 High Turbidity 25
    2.1.3 Steep Riverbed Upstream 26
    2.1.4 Oxidative Water Condition 29
    2.1.5 High Salinity 29
    2.2 Sulfur Element Distribution in the Watershed 30
    2.2.1 Dissolved Sulfur in Water Phase 30
    2.2.2 Sulfur Distributions in Sediments 31
    Chapter 3 Metallic Elements’ Fate and Migration Mechanisms in the AMD-Affected River 37
    3.1 Metallic Elements in the Watershed 37
    3.1.1 Dissolved Metallic Elements in the Water Phase 37
    3.1.2 Metallic Elements in Sediment Phase 38
    3.2 Migration Mechanisms for Metallic Elements in the Affected Watershed 44
    3.2.1 Potential Mobility 44
    3.2.2 Oxidative Leaching and Re-Adsorption 45
    3.2.3 Hydraulic Transportation 46
    3.2.4 Precipitation/ Co-Precipitation 47
    3.3 Relations of Sulfur, Iron, and Metallic Elements in the Watershed 48
    3.3.1 Relationship Argumentation by SPSS Analysis 48
    3.3.2 Relationship Argumentation by Mineralogy Analysis 50
    3.3.3 Relationship Argumentation via Isotope Analysis 54
    Chapter 4 Microbial Community Composition in AMD-Polluted Watershed and Paddy Soil 59
    4.1 Microbial Community Shifts in Response to AMD Pollution in the Hengshi River Watershed 59
    4.1.1 Materials and Methods 60
    4.1.2 Physicochemical Characterization of the Watershed 61
    4.1.3 Alpha Diversity Analyses 61
    4.1.4 Beta Diversity Analyses 66
    4.1.5 Spatiotemporal Dynamics of Microbial Communities 68
    4.2 Microbial Community Responses to AMD-Laden Pollution in Rice Paddy Soils 81
    4.2.1 Investigating the Effect of Pollution inAMD-Affected Paddy Soil 81
    4.2.2 Microbial Community and Soil Properties 82
    4.2.3 The Spatial Pattern of Microbial Community 91
    Chapter 5 Chemical Transformations of Secondary Minerals in the AMD-Affected Area: Induced by Dissolved Organic Matter 95
    5.1 Role of L-Tryptophan in the Release of Chromium from Schwertmannite 96
    5.1.1 Experimental Setting 96
    5.1.2 Results and Discussion 99
    5.1.3 Possible Mechanism 109
    5.2 Fulvic Acid Induction of the Liberation of Chromium From CrO24 -Substituted Schwertmannite 111
    5.2.1 Release of Total Fe, Cr, and SO24- from Schwertmannite 111
    5.2.2 Cr Speciation Analysis 122
    5.2.3 Proposed Schematic Illustrating Fate of Fe and Cr 123
    5.3 Elucidation of Desferrioxamine B on the Liberation of Chromium from Schwertmannite 124
    5.3.1 Dissolution Kinetics 124
    5.3.2 Effects of DFOB and pH on the Dissolution of Cr-Schwertmannite 125
    Chapter 6 Chemical Transformations of Secondary Minerals in AMD-Affected Area: Induced by Inorganic Substance 139
    6.1 Effect of Cu(II) on the Stability of Oxyanion-Substituted Schwertmannite 140
    6.1.1 Schwertmannite Synthesis 140
    6.1.2 Stability Experiments 141
    6.1.3 Effect of Cu(II) on the Stability of Oxyanion-Substituted Schwertmannite 142
    6.2 Transformation of Cadmium-Associated Schwertmannite and Subsequent Element Repartitioning Behaviors 159
    6.2.1 Cd-associated Schwertmannite Synthesis 159
    6.2.2 Surface Complexation Model Simulations 159
    6.2.3 Cd-associated Schwertmannite Transformation Experiments 160
    6.2.4 Transformation Mechanism of Cadmium-associated Schwertmannite 160
    6.3 The Behavior of Chromium and Arsenic Associated with Redox Transformation of Schwertmannite in AMD Environment 173
    6.3.1 Schwertmannite Synthesis 173
    6.3.2 Transformation Experiments 173
    6.3.3 The Behavior of Chromium and Arsenic Associated with Redox Transformation of Schwertmannite In AMD Environment 174
    6.4 Thiocyanate-Induced Labilization of Schwertmannite: Impacts and Mechanisms 188
    6.4.1 The Inducing Transformation of Schwertmannite 188
    6.4.2 TheMechanismofThiocyanate-InducedTransformation 189
    6.4.3 pH-Controlled Transformation 200
    6.4.4 Ligand-Promoted Transformation 201
    Chapter 7 The Microbial Transformation of Schwertmannite 203
    7.1 Schwertmannite Transformation Led by Iron-Reducing Bacte

    在線試讀
    Chapter 1 Pollution of Acid Mine Drainage in the Mining Area
    Heavy metal pollution is a serious concern due to the potentially harmful long-term effects for both the environment and human health. The elevated level of toxic elements in aquatic and terrestrial environments is mainly related to past and ongoing mining activities. China has many large-scale mineral resources, which account for about 12% of the total mineral resources in the world (Li et al., 2014). According to estimates, only 0.02 t of useful material can be obtained for every 1 t of ore mined, and 0.42 t of abandoned rock, 0.52 t of tailings, and 0.04 t of smelting waste residue are left in the waste (Ripley et al., 1995). Mining has generated about 1 500 000 ha of wasteland, and this figure is increasing by a rate of 46 700 ha per year in China (Zhuang et al., 2009). The wastewater produced from mining operations from mine waste dumps, known in academics as acid mine drainage (AMD), is often acidic and enriched with metallic elements, and is considered to be one of the main pollution problems that are due to historic or current mining activities (Anawar, 2015; Schaider et al., 2014). The generation, release, mobility, and attenuation of AMD involve complex processes governed by a combination of physical, chemical and biological factors (Simate et al., 2014). In this chapter, we review the current study work performed in recent years on AMD occurrence, effects, and generation mechanisms and summarize the approaches taken so far to prevent the AMD generation. At the end of the chapter, the research site-a classical polymetallic mining area, the Dabaoshan Mine-is introduced, and the main points of interest in the past and present study work of our team are listed.
    1.1 Acid Mine Drainage and Its Occurrence

    Chapter 1 Pollution of Acid Mine Drainage in the Mining Area
    Heavy metal pollution is a serious concern due to the potentially harmful long-term effects for both the environment and human health. The elevated level of toxic elements in aquatic and terrestrial environments is mainly related to past and ongoing mining activities. China has many large-scale mineral resources, which account for about 12% of the total mineral resources in the world (Li et al., 2014). According to estimates, only 0.02 t of useful material can be obtained for every 1 t of ore mined, and 0.42 t of abandoned rock, 0.52 t of tailings, and 0.04 t of smelting waste residue are left in the waste (Ripley et al., 1995). Mining has generated about 1 500 000 ha of wasteland, and this figure is increasing by a rate of 46 700 ha per year in China (Zhuang et al., 2009). The wastewater produced from mining operations from mine waste dumps, known in academics as acid mine drainage (AMD), is often acidic and enriched with metallic elements, and is considered to be one of the main pollution problems that are due to historic or current mining activities (Anawar, 2015; Schaider et al., 2014). The generation, release, mobility, and attenuation of AMD involve complex processes governed by a combination of physical, chemical and biological factors (Simate et al., 2014). In this chapter, we review the current study work performed in recent years on AMD occurrence, effects, and generation mechanisms and summarize the approaches taken so far to prevent the AMD generation. At the end of the chapter, the research site-a classical polymetallic mining area, the Dabaoshan Mine-is introduced, and the main points of interest in the past and present study work of our team are listed.
    1.1 Acid Mine Drainage and Its Occurrence
    Tailings piles or ponds, mine waste rock dumps, and coal spoils are the main sources of AMD. Solid wastes of mining frequently contain significant concentrations of sulfides, such as pyrite (FeS2), pyrrhotite (Fe1-xS), and chalcopyrite (CuFeS2) (Naidu et al., 2019). When the wastes are exposed to water and atmospheric oxygen, and thus are subject to weathering or rapid oxidation, the sulfide metals involved tend to become more chemically active, resulting in the generation of AMD. Water percolating through waste dumps becomes acidic, unless there are sufficient basic minerals to counterbalance the acidity (Dettrick et al., 2019). In mining areas, AMD formation is often more extensive after mine closure and can persist for hundreds or even thousands of years. Because the pumps used to keep the water table low to facilitate mining activities are turned off after the mine is abandoned, the groundwater levels rise, making it easier for sulfide minerals to be exposed to water, oxygen, and bacteria. AMD has resulted in multiple pressures on freshwater and soil ecosystems, with severe loss of biodiversity and ecological function, and is considered a worldwide environmental problem (Steyn et al., 2019; Park et al., 2018).
    One classic case is the Iberian Pyrite Belt, located in the southwest of Spain, which is an area heavily affected by AMD that originated from historical mining activities. In the catchment of the Odiel River, pyrite (FeS2) is the main mineral present, and other minerals such as sphalerite (ZnS), galena (PbS), chalcopyrite (CuFeS2), and arsenopyrite (FeAsS) are found in minor concentrations. These minerals have been extracted since the days of the Roman Empire, although nowadays most of the mining activities have been disrupted. AMD is continuously produced from the dumps and tailings and discharged into the Odiel River even though mining activities have stopped (Sarmiento et al., 2018; Amils et al., 2002). In the Odiel River estuary, heavy metals have accumulated in the sediments due to the abrupt increase of pH provoked by the mixture of river water and seawater. According to Manjón et al. (2019), the heavy metals transported to the estuary were about 8.2 t/yr of arsenic, 4 431 t/yr of zinc, 17.3 t/yr of cadmium, 53.8 t / yr of lead, and 1 647 t / yr of copper. The water located in the Cobica River basin polluted by AMD was found to have extremely low pH with an average negative pH of -1.56, which had never before been found in open-air environments contaminated by AMD. Concentrations up to 59 g/L of Fe, 2.4 g/L of Al, 740 mg/L of As, 4.3 mg/L of Co, 5.3 mg/L of Ge, and 4.8 mg / L of Sb were dissolved in the polluted waters (Sarmiento et al., 2018).
    It is estimated that more than 100 000 kilometers of river and stream systems worldwide are affected by AMD and the resultant poor water quality (Dettrick et al., 2019). More than 6 000 kilometers of streams are polluted due to AMD from coal mines in the eastern United States. Meanwhile, in the western United States, forest lands are exposed to acid discharge from 20 000–50 000 mines, affecting about 8 000–16 000 kilometers of streams (Naidu et al., 2019). USEPA

    書摘插畫
    插圖
    插圖

    插圖

    插圖

    插圖

    插圖

    插圖


     
    網友評論  我們期待著您對此商品發表評論
     
    相關商品
    在線留言 商品價格為新臺幣
    關於我們 送貨時間 安全付款 會員登入 加入會員 我的帳戶 網站聯盟
    DVD 連續劇 Copyright © 2024, Digital 了得網 Co., Ltd.
    返回頂部